LIST OF FIGURES

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Figure Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Figure 1: The structure of the female breast. (Source: modified from https://www.myvmc.com/anatomy/breast/)</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Figure 2: The Common types of BC (Source: Modified from http://en.isramedic.co.il/index.php/oncologia/Breast-cancer-treatment-in-Israel)</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Figure 3: Age-standardised incidence rate of BC per 100000 (Source: Modified from, IARC and Inas Ellater professor of Biostatistics and epidemiology, National Cancer Institute Cairo University)</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Figure 4: Stages of BC. (Source: http://advocates4breastcancer.org/index.php/about-breast-cancer/stages)</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>Fig.5: Amino acid sequence in the epitope region to which MAb B27.29 and MAb DF3 are directed, present on the peptide tandem repeat as part of the MUC1 gene-derived mucin molecule.</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>Figure 6: Generalized process diagram of cell banking</td>
<td>37</td>
</tr>
<tr>
<td>7</td>
<td>Figure 7: Schematics of immunofluorescence procedure</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>Figure 8: Detailed process diagram for Cell-Derived CA15-3 purification from Culture supernatant of T47-D cell line</td>
<td>48</td>
</tr>
<tr>
<td>9</td>
<td>Figure 9: Antigen and antibody dilution plan during checkerboard ELISA</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>Figure 10: showing detailed process diagram for SDS-PAGE and Western Blotting</td>
<td>50</td>
</tr>
<tr>
<td>11</td>
<td>Figure 11: Showing immunization schedule and titer estimation for mice.</td>
<td>53</td>
</tr>
<tr>
<td>12</td>
<td>Figure 12: Generalized protocol for hybridoma development and antibody synthesis</td>
<td>58</td>
</tr>
<tr>
<td>13</td>
<td>Figure 13: Showing details of the label on cryovial.</td>
<td>63</td>
</tr>
<tr>
<td>14</td>
<td>Figure 14: A) Monolayer and cellular morphology of T47-D cell line at 40X magnification, B) Monolayer and cellular morphology of MCF-7 cell line at 40X magnification</td>
<td>64</td>
</tr>
<tr>
<td>15</td>
<td>Figure 15: Time required attaining 90% confluency and CA15-3 secretion by MCF-7, T47-D and ZR75-30 Cell lines</td>
<td>65</td>
</tr>
<tr>
<td>16</td>
<td>Figure 16: A) Immunofluorescence image of T47-D cell line at 40X magnification, B) Immunofluorescence image of MCF-7 cell line at 40X magnification</td>
<td>66</td>
</tr>
<tr>
<td>17</td>
<td>Figure 17: Showing cell count of harvests from T47-D cells growing in 10%FBS and 2.5% FBS</td>
<td>67</td>
</tr>
<tr>
<td>Sr.NO</td>
<td>Figure Description</td>
<td>Page Number</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>18</td>
<td>Figure 18: A) Microscopic observation of T47-D cells growing at 5% FBS, B) Microscopic observation of T47-D cells growing at 2.5% FBS, C) Microscopic observation of T47-D cells growing at 0.5% FBS</td>
<td>68</td>
</tr>
<tr>
<td>19</td>
<td>Figure 19: Showing effect of D-Glucose on secretory CA15-3</td>
<td>69</td>
</tr>
<tr>
<td>20</td>
<td>Figure 20: Effect of varying D-Glucose and Insulin concentrations on secretory CA15-3.</td>
<td>71</td>
</tr>
<tr>
<td>21</td>
<td>Figure 21: Effect of Progesterone, Estrogen, IL-6, and PC-1 on secretory CA15-3.</td>
<td>72</td>
</tr>
<tr>
<td>22</td>
<td>Figure 22: Silver stained SDS-PAGE of supernatants after acid treatment. 1- Protein ladder, 2-Blank, 3- Supernatant after TCA precipitation, 4 Supernatant after PCA precipitation, 5-Supernatant after EtOH precipitation, 6-Blank, and 7- raw material.</td>
<td>73</td>
</tr>
<tr>
<td>23</td>
<td>Figure 23: Showing calculated recovery of CA15-3 after TCA, PCA, EtOH treatment. With TCA-16.03 IU out of 20IU, whereas 7.07IU and 2.12IU with PCA and EtOH respectively.</td>
<td>73</td>
</tr>
<tr>
<td>24</td>
<td>Figure 24: Showing estimated recovery of CA15-3 after treatment with different percentage of TCA.</td>
<td>74</td>
</tr>
<tr>
<td>25</td>
<td>Figure 25: Recovery of CA15-3 in fraction after size exclusion chromatography.</td>
<td>75</td>
</tr>
<tr>
<td>26</td>
<td>Figure 26: Silver stained SDS-PAGE of fractions collected after Size Exclusion Chromatography.</td>
<td>76</td>
</tr>
<tr>
<td>27</td>
<td>Figure 27: Comparative reactivity of Cell Derived antigens (green bars) with commercial antibody (red bars).</td>
<td>78</td>
</tr>
</tbody>
</table>
| 28 | Figure 28 A: Showing silver stained SDS-PAGE purified Cell-derived CA15-3.
Figure 28 B: Showing western blot of unreduced (well-2) and reduced (well-3) Cell derived CA15-3. | 78-79 |
<p>| 29 | Figure 29: FTIR spectra of cell-derived and Native CA15-3. | 81 |
| 30 | Figure 30: Graph showing antisera estimation of immunized mice. | 82 |</p>
<table>
<thead>
<tr>
<th>Sr.NO</th>
<th>Figure Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Figure 31: Bar diagram showing comparative cross reactivity with Cancer antigens.</td>
<td>89</td>
</tr>
<tr>
<td>32</td>
<td>Figure 32: Bar diagram showing reactivity of monoclonal 0.15 IU/100µl of Native CA15-3.</td>
<td>90</td>
</tr>
<tr>
<td>33</td>
<td>Figure 33: Western blot of Native and cell derived CA15-3 with purified antibodies.</td>
<td>90-91</td>
</tr>
<tr>
<td>34</td>
<td>Figure 34: A) Standard curve calculated by 9A05 as capture, B) Standard curve calculated by Kit, C) Standard curve calculated by 3F10 as capture.</td>
<td>93</td>
</tr>
<tr>
<td>35</td>
<td>Figure 35: Capture efficiency of 3F10 and 4B05 antibodies compared to the kit with a known concentration of antigens.</td>
<td>94</td>
</tr>
<tr>
<td>36</td>
<td>Figure 36: A) Standard curve plot for detector efficiency of Hrp conjugated 8E04 on kit plate of with kits standards, B) kit's standard curve plot.</td>
<td>95</td>
</tr>
<tr>
<td>37</td>
<td>Figure 37: Comparative detecting efficiency of Hrp conjugated 8E04 on Kit plate, with antigens other than kit standard.</td>
<td>96</td>
</tr>
<tr>
<td>38</td>
<td>Figure 38: Standard curve for known concentration A- In house assembly, B- Commercial Kit.</td>
<td>100</td>
</tr>
<tr>
<td>39</td>
<td>Figure 39: Comparative study of detecting efficiency of In House assembly and commercial kit.</td>
<td>101</td>
</tr>
</tbody>
</table>