INDEX

<table>
<thead>
<tr>
<th>CHAPTERS</th>
<th>CONTENTS</th>
<th>PAGE No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter I</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1.</td>
<td>Survey of literature</td>
<td>1</td>
</tr>
<tr>
<td>1.2.</td>
<td>Catalyzed Reactions</td>
<td>11</td>
</tr>
<tr>
<td>1.2(a).</td>
<td>Ruthenium(III) Chloride as a Catalyst</td>
<td>12</td>
</tr>
<tr>
<td>1.2(b).</td>
<td>Os(VIII) as a Catalyst</td>
<td>14</td>
</tr>
<tr>
<td>1.2(c).</td>
<td>Pd(II) as a Catalyst</td>
<td>15</td>
</tr>
<tr>
<td>1.2(d).</td>
<td>Iridium(III) Chloride as a Catalyst</td>
<td>16</td>
</tr>
<tr>
<td>1.2(e).</td>
<td>Rhodium(III) Chloride as a Catalyst</td>
<td>18</td>
</tr>
<tr>
<td>1.3.</td>
<td>Oxidized Reactions</td>
<td>19</td>
</tr>
<tr>
<td>1.3(a).</td>
<td>Sodium Periodate as an Oxidant</td>
<td>20</td>
</tr>
<tr>
<td>1.3(b).</td>
<td>Sodium Periodate as an Oxidant in Reactions</td>
<td>23</td>
</tr>
<tr>
<td>1.4.</td>
<td>Polyhydric Alcohols</td>
<td>27</td>
</tr>
<tr>
<td>1.4(a).</td>
<td>An Introduction to Polyhydric Alcohols</td>
<td>27</td>
</tr>
<tr>
<td>1.4(b).</td>
<td>Oxidation of Polyhydric Alcohols in Acidic medium</td>
<td>29</td>
</tr>
<tr>
<td>1.4(c).</td>
<td>Oxidation of Polyhydric Alcohols in Alkaline and Neutral Medium</td>
<td>31</td>
</tr>
<tr>
<td>1.4(d).</td>
<td>Electrolytic Oxidation of Polyhydric Alcohols</td>
<td>33</td>
</tr>
<tr>
<td>1.5.</td>
<td>Cyclic Alcohols</td>
<td>34</td>
</tr>
<tr>
<td>1.5(a).</td>
<td>Oxidation of Cyclic Alcohols in Acidic Medium</td>
<td>34</td>
</tr>
<tr>
<td>1.5(b).</td>
<td>Oxidation of Cyclic Alcohols in Alkaline Medium</td>
<td>35</td>
</tr>
<tr>
<td>1.6.</td>
<td>Aims and Objectives of Present Work</td>
<td>36</td>
</tr>
</tbody>
</table>
Chapter II
Preparation of Solution of Reagents, Method of Studies and Materials Employed.

2.1. Preparation of Standard Solutions
2.2. Experimental Procedure
2.3. Stoichiometry and Product Analysis
2.3(a). Stoichiometry and Product Analysis of Cyclopentanol and Cyclohexanol
2.3(b). Stoichiometry and Product Analysis for Ethylene Glycol and D-Sorbitol in Acidic Medium
2.3(c) Stoichiometry and Product Analysis of Glycerol and D-Mannitol

Chapter III
3.0 Determination of Order of Reaction with respect to Sodium Periodate in Rhodium(III) Catalyzed Oxidation of Cyclopentanol, Cyclohexanol, Ethylene Glycol, Glycerol, D-Mannitol and D-Sorbitol by Sodium Periodate in Acidic Medium
3.1. Determination of Order of Reaction with respect to Sodium Periodate in Rhodium(III) Catalyzed Oxidation of Cyclopentanol by Sodium Periodate in Acidic Medium
3.2. Determination of Order of Reaction with Respect to Sodium Periodate in Rhodium(III) Catalyzed Oxidation of Cyclopentanol by Sodium Periodate in Acidic Medium

3.3. Determination of Order of Reaction with respect to Sodium Periodate in Rhodium(III) Catalyzed Oxidation of Ethylene Glycol by Sodium Periodate in Acidic Medium

3.4. Determination of Order of Reaction with respect to Sodium Periodate in Rhodium(III) Catalyzed Oxidation of Glycerol by Sodium Periodate in Acidic Medium

3.5. Determination of Order of Reaction with respect to Sodium Periodate in Rhodium(III) Catalyzed Oxidation of D-Mannitol by Sodium Periodate in Acidic Medium

3.6. Determination of Order of Reaction with respect to Sodium Peridoate in Rhodium(III) Catalyzed Oxidation of D-Sorbitol by Sodium Peridate in Acidic Medium

Chapter IV

4.0 Determination of Order of Reaction with respect to Reductant (Organic Substrates) in Rhodium(III) Catalyzed Oxidation of Cyclopentanol, Cyclohexanol, Ethylene Glycol, Glycerol, D-Mannitol and D-Sorbitol by Sodium Periodate in Acidic Medium

4.1. Determination of Order of Reaction with respect to Cyclopentanol in Rhodium(III) Catalyzed Oxidation by Sodium Periodate in Acidic Medium
4.2. Determination of Order of Reaction with respect to Cyclohexanol in Rhodium(III) Catalyzed Oxidation by Sodium Periodate in Acidic Medium

4.3. Determination of Order of Reaction with respect to Ethylene Glycol in Rhodium(III) Catalyzed Oxidation by Sodium Periodate in Acidic Medium

4.4. Determination of Order of Reaction with respect to Glycerol in Rhodium(III) Catalyzed Oxidation by Sodium Periodate in Acidic Medium

4.5. Determination of Order of Reaction with respect to D-Mannitol in Rhodium(III) Catalyzed Oxidation by Sodium Periodate in Acidic Medium

4.6. Determination of Order of Reaction with respect to D-Sorbitol in Rhodium(III) Catalyzed Oxidation by Sodium Periodate in Acidic Medium

Chapter V

5.0. Determination of Order of Reaction with respect to Rhodium(III) in Oxidation of Cyclopentanol, Cyclohexanol, Ethylene Glycol, Glycerol, D-Mannitol and D-Sorbitol by Sodium Periodate in Acidic Medium

5.1. Determination of Order of Reaction with respect to Rhodium(III) in Oxidation of Cyclopentanol and Cyclohexanol by Sodium Periodate in Acidic Medium
5.2. Determination of Order of Reaction with respect to Rhodium(III) in Oxidation of Ethylene Glycol and D-Sorbitol by Sodium Periodate in Acidic Medium

5.3. Determination of Order of Reaction with respect to Rhodium(III) in Oxidation of Glycerol and D-Mannitol by Sodium Periodate in Acidic Medium

Chapter VI

6.0. Study of the Effect of Variation in Hydrogen Ion Concentration on the Rate of Rhodium(III) Catalyzed Oxidation of Cyclopentanol, Cyclohexanol, Ethylene Glycol, Glycerol, D-Mannitol and D-Sorbitol by Sodium Periodate in Acidic Medium

6.1. Study of the Effect of Variation in Hydrogen Ion Concentration on the Rate of Rhodium(III) Catalyzed Oxidation of Cyclopentanol & Cyclohexanol by NaIO₄ in Acidic Medium

6.2. Study of the Effect of Variation in Hydrogen Ion Concentration on the Rate of Rhodium(III) Catalyzed Oxidation of Ethylene Glycol and D-Sorbitol by NaIO₄ in Acidic Medium

6.3. Study of the Effect of Variation in Hydrogen Ion Concentration on the Rate of Rhodium(III) Catalyzed Oxidation of Glycerol and D-Mannitol by NaIO₄ in Acidic Medium
Chapter VII

7.0. Study of the Effect of Addition of Potassium Chloride on the Rate of Rhodium(III) Catalyzed Oxidation of Cyclopentanol, Cyclohexanol, Ethylene Glycol, Glycerol, D-Mannitol and D-Sorbitol by Sodium Periodate in Acidic Medium 192

7.1. Study of the Effect of Addition of Potassium Chloride on the Rate of Rhodium(III) Catalyzed Oxidation of Cyclopentanol & Cyclohexanol by Sodium Periodate in Acidic Medium 193

7.2. Study of the Effect of Addition of Potassium Chloride on the Rate of Rhodium(III) Catalyzed Oxidation of Ethylene Glycol and D-Sorbitol by Sodium Periodate in Acidic Medium 198

7.3. Study of the Effect of Addition of Potassium Chloride on the Rate of Rhodium(III) Catalyzed Oxidation of Glycerol and D-Mannitol by Sodium Periodate in Acidic Medium 203

Chapter VIII

8.0. Study of the Effect of Addition of Mercuric Acetate on the Rate of Reaction in Rhodium(III) Catalyzed Oxidation of Cyclopentanol, Cyclohexanol, Ethylene Glycol, Glycerol, D-Mannitol and D-Sorbitol by Sodium Periodate in Acidic Medium 208
8.1. Study of the Effect of Addition of Mercuric Acetate on the Rate of Reaction in Rhodium(III) Catalyzed Oxidation of Cyclic Alcohols and Polyhydric Alcohols by Sodium Periodate in Acidic Medium

Chapter IX

9.0. Study of the Effect of Variation of Ionic Strength of the Medium on the Rate of Rhodium(III) Catalyzed Oxidation of Cyclopentanol, Cyclohexanol, Ethylene Glycol, Glycerol, D-Mannitol and D-Sorbitol by Sodium Periodate in Acidic Medium

Chapter X

10.0. Study of the Effect of Addition of D₂O on the Rate of Rhodium(III) Catalyzed Oxidation of Cyclopentanol, Cyclohexanol, Ethylene Glycol, Glycerol, D-Mannitol and D-Sorbitol by Sodium Periodate in Acidic Medium

Chapter XI

11.0 Study of The Effect of Addition of Acetic Acid on the Rate of Rhodium(III) Catalyzed Oxidation of Cyclopentanol, Cyclohexanol, Ethylene Glycol, Glycerol, D-Mannitol and D-Sorbitol by Sodium Periodate in Acidic Medium
Chapter XII

12.0. Study of the Effect of Temperature Variation on the Rate of Reaction and Determination of Activation Parameters 261

12.1. Study of the Effect of Temperature Variation on the Rate of Rhodium(III) Catalyzed Oxidation of Cyclopentanol and Cyclohexanol by Sodium Periodate in Acidic Medium 263

12.2. Study of the Effect of Temperature Variation on the Rate of Rhodium(III) Catalyzed Oxidation of Ethylene Glycol and D-Sorbitol by Sodium Periodate in Acidic Medium 270

12.3. Study of the Effect of Temperature Variation on the Rate of Rhodium(III) Catalyzed Oxidation of Glycerol and D-Mannitol by Sodium Periodate in Acidic Medium 277

Chapter XIII

13.0. Discussion and Interpretation of Experimental Results 284

13.1(a). Reactive Species of Sodium Periodate in Acidic Medium 285

13.1(b). Reactive Species of Rhodium Trichloride in Acidic Medium in Present Investigation 286

13.2. Role of Mercuric Acetate in the Present Investigation 287

13.3(a). Summary of Kinetic Results Obtained in Rhodium(III) Chloride Catalyzed Oxidation of Cyclopentanol and Cyclohexanol by Sodium Periodate in Acidic Medium 288

13.3(b). Mechanism of Rhodium(III) Catalyzed Oxidation of
Cyclopentanol and Cyclohexanol by Sodium Periodate in Acidic Medium

13.4(a). Summary of Kinetic Results Obtained in Rhodium(III) Chloride Catalyzed Oxidation of Ethylene Glycol and D-Sorbitol by Sodium Periodate in Acidic Medium

13.4(b). Mechanism of Rhodium(III) Catalyzed Oxidation of Ethylene Glycol and D-Sorbitol by Sodium Periodate in Acidic Medium

13.5(a). Summary of Kinetic Results Obtained in Rhodium(III) Chloride Catalyzed Oxidation of Glycerol and D-Mannitol by Sodium Periodate in Acidic Medium

13.5(b). Mechanism of Rhodium(III) Catalyzed Oxidation of Glycerol and D-Mannitol by Sodium Periodate in Acidic Medium

13.6. Evaluation of Constant in Rhodium(III) Catalyzed Oxidation of Cyclic and Polyhydric Alcohols by Sodium Periodate in Acidic Medium

13.7. Calculation of Other Thermodynamic Parameters and their Interpretation

Achievements