LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE No</th>
<th>FIGURE DESCRIPTION</th>
<th>PAGE No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Schematic of chemical pulping process</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Schematic of recovery boiler furnace</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Oxidation-Reduction cycle</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Mass balance of black liquor production</td>
<td>17</td>
</tr>
<tr>
<td>3.1</td>
<td>Force balance on a droplet</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Experimental data, Weight (%) vs Time for DBS at 300°C</td>
<td>46</td>
</tr>
<tr>
<td>4.2</td>
<td>Experimental data, Weight (%) vs Time for DBS at 400°C</td>
<td>46</td>
</tr>
<tr>
<td>4.3</td>
<td>Experimental data, Weight (%) vs Time for DBS at 500°C</td>
<td>47</td>
</tr>
<tr>
<td>4.4</td>
<td>Experimental data, Weight (%) vs Time for DBS at 600°C</td>
<td>47</td>
</tr>
<tr>
<td>4.5</td>
<td>Experimental data, Weight (%) vs Time for DBS at 700°C</td>
<td>48</td>
</tr>
<tr>
<td>4.6</td>
<td>Experimental data, Weight (%) vs Time for DBS at 800°C</td>
<td>48</td>
</tr>
<tr>
<td>4.7</td>
<td>Experimental data, Weight (%) vs Time for DBS at 900°C</td>
<td>49</td>
</tr>
<tr>
<td>4.8</td>
<td>Experimental data, Weight (%) vs Time for DBS at 1000°C</td>
<td>49</td>
</tr>
<tr>
<td>4.9</td>
<td>Experimental data, Mass loss (%) vs Holding time</td>
<td>50</td>
</tr>
<tr>
<td>4.10</td>
<td>Experimental data, Mass loss (%) vs Temperature (°C)</td>
<td>50</td>
</tr>
<tr>
<td>4.11</td>
<td>Kinetic scheme for dry black liquor solids (DBS)</td>
<td>52</td>
</tr>
<tr>
<td>4.12</td>
<td>Flow chart of algorithm for single reaction model</td>
<td>54</td>
</tr>
<tr>
<td>4.13</td>
<td>Experimental and simulated data for ATnew : 6070 s⁻¹ & ETnew: 116.413 kJ/mol, initial guess values AT: 5000 s⁻¹ & ET: 80 kJ/mol., Minimum standard error: 46.90</td>
<td>56</td>
</tr>
<tr>
<td>4.14</td>
<td>Experimental and simulated data for ATnew : 9110 s⁻¹ & ETnew: 118.32 kJ/mol, initial guess values AT: 6000 s⁻¹ & ET: 90 kJ/mol., Minimum standard error: 45.24</td>
<td>57</td>
</tr>
<tr>
<td>4.15</td>
<td>Experimental and simulated data for ATnew : 9777 s⁻¹ & ETnew: 118.66 kJ/mol, initial guess values AT: 7000 s⁻¹ & ET: 90 kJ/mol., Minimum standard error: 45.55</td>
<td>58</td>
</tr>
<tr>
<td>4.16</td>
<td>Experimental and simulated data for ATnew : 9710 s⁻¹ & ETnew: 118.8 kJ/mol, initial guess values AT: 8000 s⁻¹ & ET: 90 kJ/mol., Minimum standard error: 45.73</td>
<td>59</td>
</tr>
</tbody>
</table>
4.17 Experimental and simulated data for AT_{new}: 112430 s$^{-1}$ & ET_{new}: 119.356 kJ/mol, initial guess values AT: 9000 s$^{-1}$ & ET: 70 kJ/mol., Minimum standard error: 45.73

4.18 Experimental and simulated data for AT_{new}: 12043 s$^{-1}$ & ET_{new}: 119.67 kJ/mol, initial guess values AT: 10000 s$^{-1}$ & ET: 90 kJ/mol., Minimum Standard Error: 46.44

4.19 Experimental and simulated data for AT_{new}: 13194 s$^{-1}$ & ET_{new}: 120.108 kJ/mol, initial guess values AT: 11000 s$^{-1}$ & ET: 90 kJ/mol., Minimum Standard Error: 46.83

4.20 Experimental and simulated data for AT_{new}: 13200 s$^{-1}$ & ET_{new}: 120 kJ/mol, initial guess values AT: 12000 s$^{-1}$ & ET: 100 kJ/mol., Minimum standard error: 47.19

4.21 Standard Error vs Pre-exponential factor, AT (s$^{-1}$).........................

6.1a Flow chart of algorithm for calculations in drying phase of BL droplet...

6.1b Flow chart of algorithm for calculations in transition pyrolysis phase of BL droplet

6.1c Flow chart of algorithm for calculations in pyrolysis phase of BL droplet

6.2 Desirable operating range map of maximum travel distance and desirable droplet size (Initial droplet velocity 0 m/s, Initial BL solids conc.: 65%).

6.3 Desirable operating range map of maximum travel distance and desirable droplet size (Initial droplet velocity 0 m/s, Initial BL solids conc.: 85%).

6.4 Drying zone: Effect of droplet diameter on travel time (drying time) for maximum travel distance 5.5 m and initial particle velocity: 0 m/s.

6.5 Desirable operating range map of initial droplet diameter and BL solids concentration (Maximum travel distance: 5.5 m, Initial droplet velocity: 0 m/s).

6.6 Desirable operating range map of droplet initial diameter and BL solids concentration (Maximum travel distance: 5.5 m, Initial droplet velocity: 1 m/s).

6.7 Desirable operating range map of droplet initial velocity and desirable droplet size (Maximum travel distance 5.5 m, Initial BL solids conc.: 65%).

6.8 Desirable operating range map of droplet initial velocity and desirable droplet size (Maximum travel distance 5.5 m, Initial BL solids conc.: 85%).

6.9 Desirable operating range map of initial droplet diameter and BL density (Maximum travel distance: 5.5 m, Initial droplet velocity: 0 m/s, Initial BL solids conc.: 65%)
6.10 Desirable operating range map of initial droplet diameter and BL density (Travel distance: 5.5 m, Initial droplet velocity: 0 m/s, Initial BL solids conc.: 85%).

6.11 Droplet flight in recovery boiler: Travel time as a function of initial droplet diameter for a swelling factor of 1.5 in devolatilization zone for a maximum travel distance height of 5.5 m.

6.12 Droplet flight in recovery boiler: Travel time as a function of initial droplet diameter for a swelling factor of 1.5 in devolatilization zone for 85% initial BL solids concentration indicating various regions for a maximum travel distance height of 5.5 m.

6.13 Travel time vs Initial diameter of the droplets reaching char bed in dry condition for swelling factor 1.5 for a maximum travel distance height of 5.5 m.

6.14 Travel time vs Initial diameter of the droplets reaching the char bed in dry condition for swelling factor 3.0 for a maximum travel distance height of 5.5 m.

6.15 Droplet final temperature vs Initial droplet diameter for swelling factor 1.5 for a maximum travel distance height of 5.5 m.

6.16 Droplet flight in recovery boiler: Droplet final temperature as a function of initial droplet diameter for a swelling factor of 1.5 in devolatilization zone for 85% initial BL solids concentration indicating various regions for a maximum travel distance height of 5.5 m.

6.17 Droplet final temperature vs Initial diameter of the droplet reaching the char bed in dry condition for swelling factor 1.5 for a maximum travel distance height of 5.5 m.

6.18 Droplet final temperature vs Initial diameter of the droplets reaching the char bed in dry condition for swelling factor 3.0 for a maximum travel distance height of 5.5 m.

6.19 Mass loss vs Diameter of the particle for swelling factor 1.5 & initial BL concentration 85%, 75%, 65%, 55% for a maximum travel distance height of 5.5 m.

6.20 Mass loss vs Droplet initial diameter for swelling factor 3.0 & initial BL solids concentration 85%, 75%, 65%, 55% for a maximum travel distance height of 5.5 m.

6.21 Mass loss vs Droplet initial diameter for initial BL concentration 85% & swelling factor 1.0, 1.5, 2.0, 2.5, 3.0 for a maximum travel distance height of 5.5 m.

6.22 Mass loss vs Droplet initial diameter for initial BL solids concentration 55% & swelling factor 1.5, 2.0, 2.5, 3.0 for a maximum travel distance height of 5.5 m.
6.23 Droplet flight in recovery boiler for initial droplet diameter of 1.8 mm, swelling factor 1.5 (devolatilization zone) and 85% initial BL solids concentration. a) Droplet temperature as a function of travel distance b) Droplet travel time as a function of travel distance.

6.24 Droplet flight in a recovery boiler for initial droplet diameter of 2.2 mm, swelling factor 1.5 (devolatilization zone) and 65% initial BL solids concentration. a) Droplet temperature as a function of travel distance b) Droplet travel time as a function of travel distance.

A.1 Boiling point elevation as function of BL solids concentration (%). 106
A.2 Thermal conductivity of air in the temperature range of 173.15 K to 573.15 K. 107

B.1 Standard error vs Activation Energy for AT: 5000 s⁻¹.............................. 116
B.2 Standard Error vs Activation Energy for AT: 6000 s⁻¹............................ 116
B.3 Standard Error vs Activation Energy for AT: 7000 s⁻¹............................ 117
B.4 Standard Error vs Activation Energy for AT: 8000 s⁻¹............................ 117
B.5 Standard Error vs Activation Energy for AT: 9000 s⁻¹............................ 118
B.6 Standard Error vs Activation Energy for AT: 10000 s⁻¹.......................... 118
B.7 Standard Error vs Activation Energy for AT: 11000 s⁻¹......................... 119
B.8 Standard Error vs Activation Energy for AT: 12000 s⁻¹......................... 119
F.1 Droplet flight in recovery boiler: Travel time as a function of initial droplet diameter for a swelling factor of 2.0 for maximum travel distance of 5.5 m. 152
F.2 Travel time vs Initial diameter of the droplets reaching char bed in dry condition for swelling factor 2.0 for maximum travel distance of 5.5 m. 152
F.3 Droplet flight in recovery boiler: Travel time as a function of initial droplet diameter for a swelling factor of 2.5 for maximum travel distance of 5.5 m. 153
F.4 Travel time vs Initial diameter of the droplets reaching char bed in dry condition for swelling factor 2.5 for maximum travel distance of 5.5 m. 153
F.5 Droplet flight in recovery boiler: Travel time as a function of initial droplet diameter for a swelling factor of 3.0 for maximum travel distance of 5.5 m. 154
F.6 Final particle temperature vs Initial droplet diameter for swelling factor 3.0 for maximum travel distance of 5.5 m. 154
F.7 Final particle temperature vs Initial droplet diameter for swelling factor 2.5 for maximum travel distance of 5.5 m.

F.8 Final particle temperature vs Initial diameter of the droplets reaching char bed in dry condition for swelling factor 2.5 for maximum travel distance of 5.5 m.

F.9 Final particle temperature vs Initial droplet diameter for swelling factor 2.0 for maximum travel distance of 5.5 m.

F.10 Final particle temperature vs Initial diameter of the droplets reaching char bed in dry condition for swelling factor 2.0 for maximum travel distance of 5.5 m.

F.11 Mass loss vs Diameter of the particle for swelling factor 2.0 & initial BL concentration 85%, 75%, 65%, 55% for maximum travel distance of 5.5 m.

F.12 Mass loss vs Droplet initial diameter for swelling factor 2.5 & initial BL concentration 85%, 75%, 65%, 55%.

F.13 Mass loss vs Droplet initial diameter for initial BL concentration 75% & swelling factor 1.5, 2.0, 2.5, 3.0.

F.14 Mass loss vs Droplet initial diameter for initial BL concentration 65% & swelling factor 1.5, 2.0, 2.5, 3.0.