I hereby declare that the work reported in the Ph.D. thesis entitled “Ecotoxicological and Genotoxicological Characterization of Industrial Effluent from Sachin Industrial Zone, Surat, South Gujarat, India” submitted to the Department of Biosciences, Veer Narmad South Gujarat University, Surat is an authentic record of my work carried out under the supervision of Dr. M. N. Reddy, Professor, Department of Biosciences, Veer Narmad South Gujarat University, Surat. I have not submitted this work elsewhere for any other degree or diploma. I am fully responsible for the contents of my Ph.D. Thesis.

Jigarkumar Rameshbhai Rana
(Research Scholar)
Registration N° 2848
Department of Biosciences
Veer Narmad South Gujarat University
Surat, Gujarat
Date :
ACKNOWLEDGEMENTS

I take this opportunity to express my reverence to my Research Guide, Dr. M.N. Reddy, Professor of Biosciences, Veer Narmad South Gujarat University, Surat, who introduced me to a fascinating realm of my current research work. His inspiring guidance and constant motivation have helped me to understand better and remain optimistic. I am grateful to him for giving me liberty in the work undertaken & for unwavering support and encouragement during my doctoral programme. Although this eulogy is insufficient, I preserve an everlasting gratitude for him.

This work was also possible because of the unconditional support provided by Dr. S.K. Tank, Professor and Head, Department of Biosciences, VNSGU, Surat.

I am grateful to my teachers, who inspired my interest in Science and ushered me towards a career in Biological Sciences. True mentors are the anonymous reviewers, who showed the rationale of research to me. This has greatly helped me in improving the insights, skills and taught the process in the approach, design and analysis of research problems.

I wish to acknowledge my deep gratitude to Dr. Pankaj Gadhia, retired Professor and Head, Department of Biosciences, VNSGU, Surat for his genuine support in the administrative process of my Ph.D. registration. I am thankful to the teaching and non-teaching staff of the Department of Biosciences, Veer Narmad South Gujarat University, Surat for their timely help. Also contributions of Dr. VGS Sharma, Mr. Chirag Prajapati, Mr. Rajesh Jethwa, Mr. Mitesh Patel, Mr. Gaurav and other research scholars, in the department need to be acknowledged.

I thankfully acknowledge Jai Research Foundation, Vapi for supporting me to conduct the research. I express my gratitude to Dr. Manish Patel, Dr. Nadeem Khan, Dr. Ekhalak Ansari, Dr. K. Baskar, Mr. Ankur Upadhyay, Mr. Partha Bose, Dr. Rajendra Nagane, Dr. Rahul Date, Ms. Heena Parmar, Ms. Jinal Shah, Ms. Minal Kamle, Ms. Pallavi Chaudhari, Mr. Tirath Jotva, Mr. Brijendra Kurmi, Mr. Ashok Amruskar, Mr. Gopi and to all the staff of Jai Research Foundation for their help and suggestions.
ACKNOWLEDGEMENTS (continued)

I extend my special thanks to Dr. Dipak Patel, a person with an amicable nature; he has always made himself available to help me and to clarify my doubts despite his busy schedules.

To my friends, you should know that your support and encouragement were worth more than I can express on paper. My thanks are due to Mr. Macky Suraliwala, Mr. Denish Gandhi, Mr. Amish Desai, Mr. Anand Shah, Mr. Rizvan Patel and Mr. Dilip Patel for their contributions and sparing time to be with me and constantly encouraging me to complete my thesis.

Undoubtedly, immortal people were associated with this thesis and are impossible to me to mention all of them. In this regard, my honest, humble, and sincere thanks to all the individuals who have in any way been associated with the completion of this research work.

Further, I express my wholehearted thanks to my wife, Mrs. Kinnari J. Rana for her forbearance, untiring support and encouragement. I appreciate the patience of my little baby, Hiya J. Rana and my niece, Vrisha B. Rana shown during my research period.

I render my sincere gratefulness to my beloved parents, Mrs. Ranjanben R. Rana and Late Mr. Rameshbhai S. Rana for being my source of inspiration and providing unvarying support. I would like to express thanks to my dearest brother, Mr. Bhavin R. Rana, Mr. Jatin R. Rana and sister-in-law, Mrs. Lina B. Rana and Mrs. Shaifali J. Rana for their support.

Date:

JIGARKUMAR R. RANA
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>↓</td>
<td>Significantly lower than control at 1% level (p < 0.05)</td>
</tr>
<tr>
<td>↓↓</td>
<td>Significantly lower than control at 1% level (p < 0.01)</td>
</tr>
<tr>
<td>β-NADP</td>
<td>β Nicotinamide adenine dinucleotide Phosphate</td>
</tr>
<tr>
<td>°C</td>
<td>Degree celsius</td>
</tr>
<tr>
<td>2Aa</td>
<td>2-Aminoanthracene</td>
</tr>
<tr>
<td>AAS</td>
<td>Atomic Absorbance Spectrophotometer</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>APHA</td>
<td>American Public Health Association</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>BOD</td>
<td>Biochemical oxygen demand</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical oxygen demand</td>
</tr>
<tr>
<td>CPCB</td>
<td>Central Pollution Control Board</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient Variation</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved oxygen</td>
</tr>
<tr>
<td>EC</td>
<td>Effective concentration</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas chromatography-mass spectrometry</td>
</tr>
<tr>
<td>GIDC</td>
<td>Gujarat Industrial Development Corporation</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>hpf</td>
<td>Hour post fertilization</td>
</tr>
<tr>
<td>I<sub>y</sub></td>
<td>Yield inhibition</td>
</tr>
<tr>
<td>Km</td>
<td>Kilometer</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>LC</td>
<td>Lethal concentration</td>
</tr>
<tr>
<td>LOEC</td>
<td>Lowest observed effect concentration</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>min.</td>
<td>Minute</td>
</tr>
<tr>
<td>mL</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>MOE</td>
<td>Ministry of Environment</td>
</tr>
<tr>
<td>N</td>
<td>Normality</td>
</tr>
<tr>
<td>NC</td>
<td>Negative Control</td>
</tr>
<tr>
<td>ND</td>
<td>Not detected</td>
</tr>
<tr>
<td>NOEC</td>
<td>No observed effect concentration</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
</tr>
<tr>
<td>PAHs</td>
<td>Poly-aromatic hydrocarbons</td>
</tr>
<tr>
<td>PC</td>
<td>Positive Control</td>
</tr>
<tr>
<td>PCBs</td>
<td>Polychlorinated biphenyls</td>
</tr>
<tr>
<td>PCF</td>
<td>Petroleum carbon fuel</td>
</tr>
<tr>
<td>pH</td>
<td>potentially of hydrogen</td>
</tr>
<tr>
<td>R</td>
<td>Replicate</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SurSEZ</td>
<td>Surat Special Economic Zone</td>
</tr>
<tr>
<td>TDS</td>
<td>Total dissolved solids</td>
</tr>
<tr>
<td>TIE</td>
<td>Toxicity identification evaluation</td>
</tr>
<tr>
<td>TLM</td>
<td>Median tolerance limit</td>
</tr>
<tr>
<td>TRE</td>
<td>Toxicity reduction evaluation</td>
</tr>
<tr>
<td>TS</td>
<td>Total solid</td>
</tr>
<tr>
<td>TSS</td>
<td>Total suspended solids</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
</tr>
<tr>
<td>USEPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>V</td>
<td>Volume</td>
</tr>
<tr>
<td>WET</td>
<td>Whole effluent toxicity</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>μm</td>
<td>Micrometer</td>
</tr>
<tr>
<td>μS</td>
<td>Microsiemens</td>
</tr>
</tbody>
</table>
CONTENTS

PAGE N°

<table>
<thead>
<tr>
<th>DECLARATION</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>CERTIFICATE</td>
<td>II</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>III</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>V</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>VII</td>
</tr>
</tbody>
</table>

1. INTRODUCTION ...1
 1.1 Background of the Study ..1
 1.2 Statement of the Research ..3
 1.3 Justification of the Study ..4
 1.4 Research Questions ..5
 1.5 Objectives of the Study ...6
 1.5.1 General Objective ..6
 1.5.2 Specific Objectives ...6
 1.6 Significance and Anticipated Outputs7
 1.7 Scope and Limitations of the Study8
 1.8 Operational Definitions of the Terms and Concepts9
 1.8.1 Effluent and Whole Effluent Toxicity (WET)9
 1.8.2 Ecotoxicology ..15
 1.8.2.1 Alga, Growth Inhibition Test17
 1.8.2.2 Acute and Chronic Daphnia Toxicity Test17
 1.8.2.3 Acute Fish and Fish Embryo Toxicity Test18
 1.8.3 Genotoxicology ..19
 1.8.3.1 AMES Test ..21

2. REVIEW OF LITERATURE ..22
 2.1 Water and Industrial Effluent23
 2.2 Physico-chemical Properties of Industrial Effluent29
 2.3 Heavy Metal ..32
CONTENTS (Continued)

PAGE N°

2.4 Ecotoxicology and Industrial Effluent ... 33
 2.4.1 Algae .. 38
 2.4.2 Daphnia mangna ... 40
 2.4.3 Fish and Fish Embryo .. 41
2.5 Genotoxicity and Industrial Effluent ... 45
 2.5.1 AMES Test .. 47

3. PHYSICO-CHEMICAL ANALYSIS OF DIFFERENT INDUSTRIAL
 EFFLUENT .. 48
3.1 Introduction ... 48
3.2 Sampling Sites ... 51
3.3 Sample Collection ... 52
3.4 Material and Methods .. 53
 3.4.1 Temperature .. 53
 3.4.2 Conductivity ... 53
 3.4.3 Total Solid .. 53
 3.4.4 Total Dissolved Solids .. 54
 3.4.5 Total Suspended Solids .. 55
 3.4.6 pH .. 55
 3.4.7 Dissolved Oxygen ... 55
 3.4.8 Bio-chemical Oxygen Demand ... 56
 3.4.9 Chemical Oxygen Demand .. 57
 3.4.10 Chloride .. 58
 3.4.11 Nitrate ... 59
 3.4.12 Phosphate ... 60
 3.4.13 Oil & Grease .. 60
 3.4.14 Heavy Metals ... 61
3.5 Results and Discussion ... 62
3.6 Conclusion .. 65
4. GAS CHROMATOGRAPHY-MASS SPECTROMETRY (GC-MS)

STUDY OF INDUSTRIAL EFFLUENT ... 68
4.1 Introduction .. 68
4.2 Materials and Methods ... 71
 4.2.1 Liquid-liquid Extraction .. 71
 4.2.2 Gas chromatography/Mass spectrometry Analysis 71
4.3 Results and Discussion .. 72
4.4 Conclusion ... 88

5. ALGA (Pseudokirchneriella subcapitata), GROWTH INHIBITION TEST....114

5.1 Introduction ... 114
5.2 Materials and Methods ... 115
 5.2.1 Alga Culture Stock Solution and Medium Preparation 115
 5.2.2 Test Organism .. 116
 5.2.3 Pre-culture ... 116
 5.2.4 Initial Cell Concentration ... 116
 5.2.5 Test Conditions .. 117
 5.2.6 Sample Preparation ... 117
 5.2.7 Test Culture Maintenance .. 118
 5.2.8 Algal Cell Count ... 118
 5.2.9 Comparison of Area under the Growth Curve 118
 5.2.10 Percent inhibition of Cell Growth (Biomass)............................... 119
 5.2.11 Calculation of Growth Rate .. 119
 5.2.12 Percent Inhibition of Growth Rate ... 119
 5.2.13 Percent Inhibition of Yield ... 120
 5.2.14 Calculation of NOEC and LOEC ... 120
 5.2.15 Statistical Analysis of Results .. 121
5.3 Results and Discussion .. 122
5.4 Conclusion ... 135
6. ACUTE IMMOBILISATION AND REPRODUCTION TEST

STUDY OF Daphnia magna ...175

6.1 Introduction ..175

6.2 Materials and Methods ..177

I Acute Immobilisation Study of Industrial Effluent to Daphnia magna

6.2.1 Test System ...177

6.2.2 Exposure Conditions ...177

6.2.3 Reconstituted Water ...178

6.2.4 Preparation of Test Concentrations ...178

6.2.5 Daphnid Selection ...179

6.2.6 Observations ..179

6.2.7 Statistical Analysis of Results ...180

II Effect of Industrial Effluent on Reproduction Daphnia magna

6.2.8 Source ..181

6.2.9 Exposure Conditions ...181

6.2.10 Reconstituted Water ...181

6.2.11 Preparation of Test Concentrations for Reproduction Test182

6.2.12 Daphnid Selection ...182

6.2.13 Observations ...183

6.2.14 Statistical Analysis of Results ...183

6.3 Results and Discussion ...185

6.4 Conclusion ..195

7. ACUTE TOXICITY STUDY OF ZEBRAFISH, Danio rerio TO

INDUSTRIAL WASTEWATER ...238

7.1 Introduction ..238

7.2 Materials and Methods ...241

7.2.1 Justification for Selection of the Test System241
CONTENTS (Continued)

I. Acute Fish Toxicity Test of Industrial Effluent

7.2.2 Instruments and Equipment ... 241
7.2.3 Solvents and Chemicals ... 241
7.2.4 Test System ... 242
7.2.5 Feeding ... 242
7.2.6 Acclimatisation ... 242
7.2.7 Exposure Conditions ... 242
7.2.8 Preparation of Test Solution ... 243
7.2.9 Observations ... 244
7.2.10 Water Quality Parameters .. 244
7.2.11 Statistical Analysis .. 244

II. Fish Embryo Toxicity Test of Industrial Effluent

7.2.12 Justification for Selection of Test System 245
7.2.13 Instruments and Equipment ... 245
7.2.14 Test System .. 246
7.2.15 Scientific Name, Strain and Source ... 246
7.2.16 Parameters for Adult Zebrafish Maintenance 246
7.2.17 Method of Egg Collection ... 246
7.2.18 Duration of the Experiment .. 247
7.2.19 Test Media/Dilution Water ... 247
7.2.20 Test Chambers .. 247
7.2.21 Test Conditions and Exposure .. 248
7.2.22 Controls ... 248
7.2.23 Test Concentrations ... 248
7.2.24 Test Volume .. 249
7.2.25 Procedure ... 249
7.2.26 Observations ... 250
7.2.27 Treatment of Results ... 250
CONTENTS (Continued)

<table>
<thead>
<tr>
<th>PAGE N°</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>251</td>
<td>7.3 Results and Discussion</td>
</tr>
<tr>
<td>269</td>
<td>7.4 Conclusion</td>
</tr>
<tr>
<td>321</td>
<td>8. GENOTOXICOLOGICAL EVALUATION OF INDUSTRIAL EFFLUENT BY AMES</td>
</tr>
<tr>
<td>321</td>
<td>8.1 Introduction</td>
</tr>
<tr>
<td>323</td>
<td>8.2 Material and Method</td>
</tr>
<tr>
<td>323</td>
<td>8.2.1 Tester Strains</td>
</tr>
<tr>
<td>323</td>
<td>8.2.2 Metabolic Activation System (S9 Fraction and S9 Mix)</td>
</tr>
<tr>
<td>323</td>
<td>8.2.3 Composition of Co-factor Mix and S9 Mix</td>
</tr>
<tr>
<td>324</td>
<td>8.2.4 Composition of Top Agar and Minimal Glucose Agar</td>
</tr>
<tr>
<td>324</td>
<td>8.2.5 Plate Incorporation Method</td>
</tr>
<tr>
<td>326</td>
<td>8.2.6 Positive Controls</td>
</tr>
<tr>
<td>328</td>
<td>8.2.7 Sterility Check for the Operating System</td>
</tr>
<tr>
<td>329</td>
<td>8.2.8 Cell Viability Test</td>
</tr>
<tr>
<td>329</td>
<td>8.2.9 Assay Evaluation Criteria</td>
</tr>
<tr>
<td>330</td>
<td>8.2.10 Assay Evaluation Criteria</td>
</tr>
<tr>
<td>331</td>
<td>8.3 Result and Discussion</td>
</tr>
<tr>
<td>344</td>
<td>8.4 Conclusion</td>
</tr>
<tr>
<td>372</td>
<td>SUMMARY</td>
</tr>
<tr>
<td>400</td>
<td>CONCLUSION</td>
</tr>
<tr>
<td>402</td>
<td>REFERENCES</td>
</tr>
<tr>
<td>437</td>
<td>CERTIFICATES</td>
</tr>
</tbody>
</table>
TABLES

Table 3.7.1 Physico-chemical Parameters of Effluents ..65
Table 3.7.2 Heavy Metal Analyses of Effluents ...66

Table 4.6.1 GC-MS Analysis of Industrial Effluent of May 2014: Site 189
Table 4.6.2 GC-MS Analysis of Industrial Effluent of May 2014: Site 291
Table 4.6.3 GC-MS Analysis of Industrial Effluent of May 2014: Site 394
Table 4.6.4 GC-MS Analysis of Industrial Effluent of September 2014: Site 1 ...96
Table 4.6.5 GC-MS Analysis of Industrial Effluent of September 2014: Site 2 ...99
Table 4.6.6 GC-MS Analysis of Industrial Effluent of September 2014: Site 3 ...102
Table 4.6.7 GC-MS analysis of Industrial Effluent of January 2015: Site 1106
Table 4.6.8 GC-MS analysis of Industrial Effluent of January 2015: Site 2109
Table 4.6.9 GC-MS Analysis of Industrial Effluent of January 2015: Site 3111

Table 5.5.1 Algal Cell Count of Industrial Effluent of May 2014: Site 1136
Table 5.5.2 Algal Cell Count, Biomass and Specific Growth Rates of
 Industrial Effluent of May 2014: Site 1...137
Table 5.5.3 Percentage Inhibition of Biomass, Growth Rate and Yield of
 Industrial Effluent of May 2014: Site 1...138
Table 5.5.4 Algal Cell Count of Industrial Effluent of May 2014: Site 2140
Table 5.5.5 Algal Cell Count, Biomass and Specific Growth Rates of
 Industrial Effluent of May 2014: Site 2...141
Table 5.5.6 Percentage Inhibition of Biomass, Growth Rate and Yield of
 Industrial Effluent of May 2014: Site 2...142
Table 5.5.7 Algal Cell Count of Industrial Effluent of May 2014: Site 3144
Table 5.5.8 Algal Cell Count, Biomass and Specific Growth Rates of
 Industrial Effluent of May 2014: Site 3...145
Table 5.5.9 Percentage Inhibition of Biomass, Growth Rate and Yield of
 Industrial Effluent of May 2014: Site 3...146
Table 5.5.10 EC₅₀ Values for Biomass, Growth Rate and Yield of Industrial Effluent of May 2014: Site 1, 2, 3 ..148
Table 5.5.11 Algal Cell Count of Industrial Effluent of September 2014: Site 1149
Table 5.5.12 Algal Cell Count, Biomass and Specific Growth Rates of Industrial Effluent of September 2014: Site 1150
Table 5.5.13 Percentage Inhibition of Biomass, Growth Rate and Yield of Industrial Effluent of September 2014: Site 1151
Table 5.5.14 Algal Cell Count of Industrial Effluent of September 2014: Site 2153
Table 5.5.15 Algal Cell Count, Biomass and Specific Growth Rates of Industrial Effluent of September 2014: Site 2154
Table 5.5.16 Percentage Inhibition of Biomass, Growth Rate and Yield of Industrial Effluent of September 2014: Site 2155
Table 5.5.17 Algal Cell Count of Industrial Effluent of September 2014: Site 3157
Table 5.5.18 Algal Cell Count, Biomass and Specific Growth Rates of Industrial Effluent of September 2014: Site 3158
Table 5.5.19 Percentage Inhibition of Biomass, Growth Rate and Yield of Industrial Effluent of September 2014: Site 3159
Table 5.5.20 EC₅₀ Values for Biomass, Growth Rate and Yield of Industrial Effluent of May 2014: Site 1, 2, 3161
Table 5.5.21 Algal Cell Count of Industrial Effluent of January 2015: Site 1162
Table 5.5.22 Algal Cell Count, Biomass and Specific Growth Rates of Industrial Effluent of January 2015: Site 1163
Table 5.5.23 Percentage Inhibition of Biomass, Growth Rate and Yield of Industrial Effluent of January 2015: Site 1164
Table 5.5.24 Algal Cell Count of Industrial Effluent of January 2015: Site 2166
Table 5.5.25 Algal Cell Count, Biomass and Specific Growth Rates of Industrial Effluent of January 2015: Site 2167
TABLES (Continued)

Table 5.5.26 Percentage Inhibition of Biomass, Growth Rate and Yield of Industrial Effluent of January 2015: Site 2 ... 168
Table 5.5.27 Algal Cell Count of Industrial Effluent of January 2015: Site 3 ... 170
Table 5.5.28 Algal Cell Count, Biomass and Specific Growth Rates of Industrial Effluent of January 2015: Site 3 ... 171
Table 5.5.29 Percentage Inhibition of Biomass, Growth Rate and Yield of Industrial Effluent of January 2015: Site 3 ... 172
Table 5.5.30 EC50 Values for Biomass, Growth Rate and Yield of Industrial Effluent of January 2015: Site 1, 2, 3 ... 174

Table 6.5.1 Percent Immobility of Daphnia magna to Industrial Effluent (May 2014: Site 1) .. 196
Table 6.5.2 Behavioural Symptoms of Daphnia magna to Industrial Effluent (May 2014: Site 1) .. 197
Table 6.5.3 Percent Immobility of Daphnia magna to Industrial Effluent (May 2014: Site 2) .. 198
Table 6.5.4 Behavioural Symptoms of Daphnia magna to Industrial Effluent (May 2014: Site 2) .. 199
Table 6.5.5 Percent Immobility of Daphnia magna to Industrial Effluent (May 2014: Site 3) .. 200
Table 6.5.6 Behavioural Symptoms of Daphnia magna to Industrial Effluent (May 2014: Site 3) .. 201
Table 6.5.7 Relationship between Percent Immobility and Concentration of Effluent at 48 h (May 2014: Site 1, 2, 3) ... 202
Table 6.5.8 Percent Immobility of Daphnia magna to Industrial Effluent (September 2014: Site 1) .. 203
Table 6.5.9 Behavioural Symptoms of Daphnia magna to Industrial Effluent (September 2014: Site 1) .. 204
Table 6.5.10 Percent Immobility of *Daphnia magna* to Industrial Effluent
(September 2014: Site 2) ... 205

Table 6.5.11 Behavioural Symptoms of *Daphnia magna* to Industrial Effluent
(September 2014: Site 2) ... 206

Table 6.5.12 Percent immobility of *Daphnia magna* to Industrial Effluent
(September 2014: Site 3) ... 207

Table 6.5.13 Behavioural Symptoms of *Daphnia magna* to Industrial Effluent
(September 2014: Site 3) ... 208

Table 6.5.14 Relationship between Percent Immobility and Concentration of Effluent at 48 h (September 2014: Site 1, 2, 3) 209

Table 6.5.15 Percent Immobility of *Daphnia magna* to Industrial Effluent
(January 2015: Site 1) ... 210

Table 6.5.16 Behavioural Symptoms of *Daphnia magna* to Industrial Effluent
(January 2015: Site 1) ... 211

Table 6.5.17 Percent Immobility of *Daphnia magna* to Industrial Effluent
(January 2015: Site 2) ... 212

Table 6.5.18 Percent Immobility of *Daphnia magna* to Industrial Effluent
(January 2015: Site 2) ... 213

Table 6.5.19 Percent Immobility of *Daphnia magna* to Industrial Effluent
(January 2015: Site 3) ... 214

Table 6.5.20 Behavioural Symptoms of *Daphnia magna* to Industrial Effluent (January 2015: Site 3) ... 215

Table 6.5.21 Relationship between Percent Immobility and Concentration of Effluent at 48 h (January 2015: Site 1, 2, 3) 216

Table 6.5.22 Total Number of Live Offspring per Replicate
(May 2014: Site 1) ... 217

Table 6.5.23 Total Number of Live Offspring per Group (May 2014: Site 1) 217
Tables (Continued)

Table 6.5.24 Percent Reduction in Live Offspring (May 2014: Site 1)..........218
Table 6.5.25 Total Number of Live Offspring per Replicate
(May 2014: Site 2) ..219
Table 6.5.26 Total Number of Live Offspring per Group (May 2014: Site 2)219
Table 6.5.27 Percent Reduction in Live Offspring (May 2014: Site 2)220
Table 6.5.28 Total Number of Live Offspring per Replicate
(May 2014: Site 3) ..221
Table 6.5.29 Total Number of Live Offspring per Group (May 2014: Site 3)221
Table 6.5.30 Percent Reduction in Live Offspring (May 2014: Site 3)222
Table 6.5.31 Relationship between Percent Reproduction and Concentration
(May 2014: Site 1, 2, 3) ...223
Table 6.5.32 Total Number of Live Offspring per Replicate
(September 2014: Site 1) ..224
Table 6.5.33 Total Number of Live Offspring per Group
(September 2014: Site 1) ..224
Table 6.5.34 Percent Reduction in Live Offspring (September 2014: Site 1)225
Table 6.5.35 Total Number of Live Offspring per Replicate
(September 2014: Site 2) ..226
Table 6.5.36 Total Number of Live Offspring per Group
(September 2014: Site 2) ..226
Table 6.5.37 Percent Reduction in Live Offspring (September 2014: Site 2)227
Table 6.5.38 Total Number of Live Offspring per Replicate
(September 2014: Site 3) ..228
Table 6.5.39 Total Number of Live Offspring per Group
(September 2014: Site 3) ..228
Table 6.5.40 Percent Reduction in Live Offspring
(September 2014: Site 3) ..229
Table 6.5.41 Relationship between Percent Reproduction and Concentration
(September 2014: Site 1, 2, 3) ... 230
Table 6.5.42 Total Number of Live Offspring per Replicate
(January 2015: Site 1) ... 231
Table 6.5.43 Total Number of Live Offspring per Group
(January 2015: Site 1) ... 231
Table 6.5.44 Percent Reduction in Live Offspring (January 2015: Site 1) 232
Table 6.5.45 Total Number of Live Offspring per Replicate
(January 2015: Site 2) ... 233
Table 6.5.46 Total Number of Live Offspring per Group
(January 2015: Site 2) ... 233
Table 6.5.47 Percent Reduction in Live Offspring (January 2015: Site 2) 234
Table 6.5.48 Total Number of Live Offspring per Replicate
(January 2015: Site 3) ... 235
Table 6.5.49 Total Number of Live Offspring per Group
(January 2015: Site 3) ... 235
Table 6.5.50 Percent Reduction in Live Offspring (January 2015: Site 3) 236
Table 6.5.51 Relationship between Percent Reproduction and Concentration
(January 2015: Site 1, 2, 3) .. 237

Table 7.5.1 Mortalities of Zebrafish to Industrial Effluent
(May 2014: Site 1) .. 270
Table 7.5.2 Behavioural Symptoms of Zebrafish to Industrial Effluent
(May 2014: Site 1) .. 271
Table 7.5.3 Mortalities of Zebrafish to Industrial Effluent
(May 2014: Site 2) .. 272
Table 7.5.4 Behavioural Symptoms of Zebrafish to Industrial Effluent
(May 2014: Site 2) .. 273
TABLES (Continued)

<table>
<thead>
<tr>
<th>Table No</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5.5</td>
<td>Mortalities of Zebrafish to Industrial Effluent (May 2014: Site 3)</td>
<td>274</td>
</tr>
<tr>
<td>7.5.6</td>
<td>Behavioural Symptoms of Zebrafish to Industrial Effluent (May 2014: Site 3)</td>
<td>275</td>
</tr>
<tr>
<td>7.5.7</td>
<td>Relationship between Percent Mortality and Concentration of Effluent at 96 h (May 2014: Site 1, 2 and 3)</td>
<td>276</td>
</tr>
<tr>
<td>7.5.8</td>
<td>Mortalities of Zebrafish to Industrial Effluent (September 2014: Site 1)</td>
<td>277</td>
</tr>
<tr>
<td>7.5.9</td>
<td>Behavioural Symptoms of Zebrafish to Industrial Effluent (September 2014: Site 1)</td>
<td>278</td>
</tr>
<tr>
<td>7.5.10</td>
<td>Mortalities of Zebrafish to Industrial Effluent (September 2014: Site 2)</td>
<td>279</td>
</tr>
<tr>
<td>7.5.11</td>
<td>Behavioural Symptoms of Zebrafish to Industrial Effluent (September 2014: Site 2)</td>
<td>280</td>
</tr>
<tr>
<td>7.5.12</td>
<td>Mortalities of Zebrafish to Industrial Effluent (September 2014: Site 3)</td>
<td>281</td>
</tr>
<tr>
<td>7.5.13</td>
<td>Behavioural Symptoms of Zebrafish to Industrial Effluent (September 2014: Site 3)</td>
<td>282</td>
</tr>
<tr>
<td>7.5.14</td>
<td>Relationship between Percent Mortality and Concentration of Effluent at 96 h (September 2014: Site 1, 2 and 3)</td>
<td>283</td>
</tr>
<tr>
<td>7.5.15</td>
<td>Mortalities of Zebrafish to Industrial Effluent (January 2015: Site 1)</td>
<td>284</td>
</tr>
<tr>
<td>7.5.16</td>
<td>Behavioural Symptoms of Zebrafish to Industrial Effluent (January 2015: Site 1)</td>
<td>285</td>
</tr>
<tr>
<td>7.5.17</td>
<td>Mortalities of Zebrafish to Industrial Effluent (January 2015: Site 2)</td>
<td>286</td>
</tr>
<tr>
<td>7.5.18</td>
<td>Behavioural Symptoms of Zebrafish to Industrial Effluent (January 2015: Site 2)</td>
<td>287</td>
</tr>
</tbody>
</table>
TABLES (Continued)

Table 7.5.19 Mortalities of Zebrafish to Industrial Effluent
(January 2015: Site 3) ... 288
Table 7.5.20 Behavioural Symptoms of Zebrafish to Industrial Effluent
(January 2015: Site 3) ... 289
Table 7.5.21 Relationship between Percent Mortality and Concentration of
Effluent at 96 h (January 2015: Site 1, 2 and 3) 290
Table 7.5.22 Embryo Hatching to Industrial Effluent
(May 2014: Site 1) ... 291
Table 7.5.23 Percent Embryo Hatching to Industrial Effluent
(May 2014: Site 1) ... 291
Table 7.5.24 Motilities of Embryos to Industrial Effluent
(May 2014: Site 1) ... 292
Table 7.5.25 Clinical Symptoms of Embryos to Industrial Effluent
(May 2014: Site 1) ... 292
Table 7.5.26 Embryo Hatching to Industrial Effluent
(May 2014: Site 2) ... 294
Table 7.5.27 Percent Embryo Hatching to Industrial Effluent
(May 2014: Site 2) ... 294
Table 7.5.28 Motilities of Embryos to Industrial Effluent
(May 2014: Site 2) ... 295
Table 7.5.29 Clinical Symptoms of Embryos to Industrial Effluent
(May 2014: Site 2) ... 295
Table 7.5.30 Embryo Hatching to Industrial Effluent
(May 2014: Site 3) ... 297
Table 7.5.31 Percent Embryo Hatching to Industrial Effluent
(May 2014: Site 3) ... 297
Table 7.5.32 Motilities of Embryos to Industrial Effluent
(May 2014: Site 3) ... 298
Tables (Continued)

Table 7.5.33 Clinical Symptoms of Embryos to Industrial Effluent
(May 2014: Site 3) ... 298

Table 7.5.34 Relationship between Percent Hatching and Concentration of Effluent at 96 h (May 2014: Site 1, 2, 3) 300

Table 7.5.35 Relationship between Percent Mortality and Concentration of Effluent at 96 h (May 2014: Site 1, 2, 3) 300

Table 7.5.36 Embryo Hatching to Industrial Effluent
(September 2014: Site 1) .. 301

Table 7.5.37 Percent Embryo Hatching to Industrial Effluent
(September 2014: Site 1) .. 301

Table 7.5.38 Motilities of Embryos to Industrial Effluent
(September 2014: Site 1) .. 302

Table 7.5.39 Clinical Symptoms of Embryos to Industrial Effluent
(September 2014: Site 1) .. 302

Table 7.5.40 Embryo Hatching to Industrial Effluent
(September 2014: Site 2) .. 304

Table 7.5.41 Percent Embryo Hatching to Industrial Effluent
(September 2014: Site 2) .. 304

Table 7.5.42 Motilities of Embryos to Industrial Effluent
(September 2014: Site 2) .. 305

Table 7.5.43 Clinical Symptoms of Embryos to Industrial Effluent
(September 2014: Site 2) .. 305

Table 7.5.44 Embryo Hatching to Industrial Effluent
(September 2014: Site 3) .. 307

Table 7.5.45 Percent Embryo Hatching to Industrial Effluent
(September 2014: Site 3) .. 307

Table 7.5.46 Motilities of Embryos to Industrial Effluent
(September 2014: Site 3) .. 308
Tables (Continued)

Table 7.5.47 Clinical Symptoms of Embryos to Industrial Effluent
(September 2014: Site 3) ... 308

Table 7.5.48 Relationship between Percent Hatching and Concentration of Effluent at 96 h (September 2014: Site 1, 2, 3) 310

Table 7.5.49 Relationship between Percent Mortality and Concentration of Effluent at 96 h (September 2014: Site 1, 2, 3) 310

Table 7.5.50 Embryo Hatching to Industrial Effluent
(January 2015: Site 1) ... 311

Table 7.5.51 Percent Embryo Hatching to Industrial Effluent
(January 2015: Site 1) ... 311

Table 7.5.52 Motilities of Embryos to Industrial Effluent
(January 2015: Site 1) ... 312

Table 7.5.53 Clinical Symptoms of Embryos to Industrial Effluent
(January 2015: Site 1) ... 312

Table 7.5.54 Embryo Hatching to Industrial Effluent
(January 2015: Site 2) ... 314

Table 7.5.55 Percent Embryo Hatching to Industrial Effluent
(January 2015: Site 2) ... 314

Table 7.5.56 Motilities of Embryos to Industrial Effluent
(January 2015: Site 2) ... 315

Table 7.5.57 Clinical Symptoms of Embryos to Industrial Effluent
(January 2015: Site 2) ... 315

Table 7.5.58 Embryo Hatching to Industrial Effluent
(January 2015: Site 3) ... 317

Table 7.5.59 Percent Embryo Hatching to Industrial Effluent
(January 2015: Site 3) ... 317

Table 7.5.60 Motilities of Embryos to Industrial Effluent
(January 2015: Site 3) ... 318
Table 7.5.61 Clinical Symptoms of Embryos to Industrial Effluent (January 2015: Site 3) ... 318
Table 7.5.62 Relationship between Percent Hatching and Concentration of Effluent at 96 h (January 2015) .. 320
Table 7.5.63 Relationship between Percent Mortality and Concentration of Effluent at 96 h (January 2015) .. 320

Table 8.5.1: Individual Revertant Colonies (May 2014: Site 1).................. 345
Table 8.5.2: Mean Number of Revertant Colonies (May 2014: Site 1)........... 346
Table 8.5.3: Individual Revertant Colonies (May 2014: Site 2).................. 348
Table 8.5.4: Mean Number of Revertant Colonies (May 2014: Site 2)........... 349
Table 8.5.5: Individual Revertant Colonies (May 2014: Site 3).................. 351
Table 8.5.6: Mean Number of Revertant Colonies (May 2014: Site 3)........... 352
Table 8.5.7: Individual Revertant Colonies (September 2014: Site 1)............ 354
Table 8.5.8: Mean Number of Revertant Colonies (September 2014: Site 1).... 355
Table 8.5.9: Individual Revertant Colonies (September 2014: Site 2)............ 357
Table 8.5.10: Mean Number of Revertant Colonies (September 2014: Site 2)... 358
Table 8.5.11: Individual Revertant Colonies (September 2014: Site 3)......... 360
Table 8.5.12: Mean Number of Revertant Colonies (September 2014: Site 3)... 361
Table 8.5.13: Individual Revertant Colonies (January 2015: Site 1)............ 363
Table 8.5.14: Mean Number of Revertant Colonies (January 2015: Site 1)....... 364
Table 8.5.15: Individual Revertant Colonies (January 2015: Site 2)............ 366
Table 8.5.16: Mean Number of Revertant Colonies (January 2015: Site 2)...... 367
Table 8.5.17: Individual Revertant Colonies (January 2015: Site 3)............ 369
Table 8.5.18: Mean Number of Revertant Colonies (January 2015: Site 3)...... 370
FIGURES

PAGE Nº

Figure 4.6.1 The GC-MS Chromatogram of Industrial Effluent of May 2014: Site 1...90

Figure 4.6.2 The GC-MS Chromatogram of Industrial Effluent of May 2014: Site 2...93

Figure 4.6.3 The GC-MS Chromatogram of Industrial Effluent of May 2014: Site 3...95

Figure 4.6.4 The GC-MS chromatogram of Industrial Effluent of September 2014: Site 1 ...98

Figure 4.6.5 The GC-MS chromatogram of Industrial Effluent of September 2014: Site 2 ...101

Figure 4.6.6 The GC-MS chromatogram of Industrial Effluent of September 2014: Site 3 ...105

Figure 4.6.7 The GC-MS chromatogram of Industrial Effluent of January 2015: Site 1 ...108

Figure 4.6.8 The GC-MS chromatogram of Industrial Effluent of January 2015: Site 2 ...110

Figure 4.6.9 The GC-MS chromatogram of Industrial Effluent of January 2015: Site 3 ...113

Figure 5.5.1 Algae Growth Curve Exposed to Industrial Effluent of May 2014: Site 1 ...139

Figure 5.5.2 Percent Inhibition of Biomass, Growth rate and yield of Industrial Effluent of May 2014: Site 1 ..139

Figure 5.5.3 Algae Growth Curve Exposed to Industrial Effluent of May 2014: Site 2 ...143

Figure 5.5.4 Percent Inhibition of Biomass, Growth rate and yield of Industrial Effluent of May 2014: Site 2 ..143
FIGURES (Continued)

Figure 5.5.5 Algae Growth Curve Exposed to Industrial Effluent of May 2014: Site 3 .. 147
Figure 5.5.6 Percent Inhibition of Biomass, Growth rate and yield of Industrial Effluent of May 2014: Site 3 147
Figure 5.5.7 Algae Growth Curves Exposed to Industrial Effluent of September 2014: Site 1 ... 152
Figure 5.5.8 Percent Inhibition of Biomass, Growth rate and yield of Industrial Effluent of September 2014: Site 1 152
Figure 5.5.9 Algae Growth Curve Exposed to Industrial Effluent of September 2014: Site 2 .. 156
Figure 5.5.10 Percent Inhibition of Biomass, Growth rate and yield of Industrial Effluent of September 2014: Site 2 156
Figure 5.5.11 Algae Growth Curve Exposed to Industrial Effluent of September 2014: Site 3 .. 160
Figure 5.5.12 Percent Inhibition of Biomass, Growth rate and yield of Industrial Effluent of September 2014: Site 3 160
Figure 5.5.13 Algae Growth Curve Exposed to Industrial Effluent of January 2015: Site 1 .. 165
Figure 5.5.14 Percent Inhibition of Biomass, Growth rate and yield of Industrial Effluent of January 2015: Site 1 165
Figure 5.5.15 Algae Growth Curve Exposed to Industrial Effluent of January 2015: Site 2 .. 169
Figure 5.5.16 Percent Inhibition of Biomass, Growth rate and yield of Industrial Effluent of January 2015: Site 2 169
Figure 5.5.17 Algae Growth Curve Exposed to Industrial Effluent of January 2015: Site 3 .. 173
Figure 5.5.18 Percent Inhibition of Biomass, Growth rate and yield of Industrial Effluent of January 2015: Site 3 173

Figure 6.5.1 Percent Immobility of *Daphnia magna* to Industrial Effluent (May 2014: Site 1) ... 196
Figure 6.5.2 Percent Immobility of *Daphnia magna* to Industrial Effluent (May 2014: Site 2) ... 198
Figure 6.5.3 Percent Immobility of *Daphnia magna* to Industrial Effluent (May 2014: Site 3) ... 200
Figure 6.5.4 Percent Immobility of *Daphnia magna* to Industrial Effluent (September 2014: Site 1) .. 203
Figure 6.5.5 Percent Immobility of *Daphnia magna* to Industrial Effluent (September 2014: Site 2) .. 205
Figure 6.5.6 Percent Immobility of *Daphnia magna* to Industrial Effluent (September 2014: Site 3) .. 207
Figure 6.5.7 Percent Immobility of *Daphnia magna* to Industrial Effluent (January 2015: Site 1) ... 210
Figure 6.5.8 Percent Immobility of *Daphnia magna* to Industrial Effluent (January 2015: Site 2) ... 212
Figure 6.5.9 Percent Immobility of *Daphnia magna* to Industrial Effluent (January 2015: Site 3) ... 214
Figure 6.5.10 Percent Reduction in Live Offspring (May 2014: Site 1) 218
Figure 6.5.11 Percent Reduction in Live Offspring (May 2014: Site 2) 220
Figure 6.5.12 Percent Reduction in Live Offspring (May 2014: Site 3) 222
Figure 6.5.13 Percent Reduction in Live Offspring (September 2014: Site 1).... 225
Figure 6.5.14 Percent Reduction in Live Offspring (September 2014: Site 2).... 227
Figure 6.5.15 Percent Reduction in Live Offspring (September 2014: Site 3).... 229
Figure 6.5.16 Percent Reduction in Live Offspring (January 2015: Site 1) 232
Figure 6.5.17 Percent Reduction in Live Offspring (January 2015: Site 2)234
Figure 6.5.18 Percent Reduction in Live Offspring (January 2015: Site 3)236

Figure 7.5.1 % Mortalities of Zebrafish to Industrial Effluent
(May 2014: Site 1) ..270
Figure 7.5.2 % Mortalities of Zebrafish to Industrial Effluent
(May 2014: Site 2) ..272
Figure 7.5.3 % Mortalities of Zebrafish to Industrial Effluent
(May 2014: Site 3) ..274
Figure 7.5.4 % Mortalities of Zebrafish to Industrial Effluent
(September 2014: Site 1) ...277
Figure 7.5.5 % Mortalities of Zebrafish to Industrial Effluent
(September 2014: Site 2) ...279
Figure 7.5.6 % Mortalities of Zebrafish to Industrial Effluent
(September 2014: Site 3) ...281
Figure 7.5.7 % Mortalities of Zebrafish to Industrial Effluent
(January 2015: Site 1) ..284
Figure 7.5.8 % Mortalities of Zebrafish to Industrial Effluent
(January 2015: Site 2) ..286
Figure 7.5.9 % Mortalities of Zebrafish to Industrial Effluent
(January 2015: Site 3) ..288
Figure 7.5.10 % Embryo Hatching and Mortality to Industrial Effluent
(May 2014: Site 1) ..293
Figure 7.5.11 % Embryo Hatching and Mortality to Industrial Effluent
(May 2014: Site 2) ..296
Figure 7.5.12 % Embryo Hatching and Mortality to Industrial Effluent
(May 2014: Site 3) ..299
FIGURES (Continued)

PAGE N°

Figure 7.5.13 % Embryo Hatching and Mortality to Industrial Effluent
(September 2014: Site 1) ...303

Figure 7.5.14 % Embryo Hatching and Mortality to Industrial Effluent
(September 2014: Site 2) ...306

Figure 7.5.15 % Embryo Hatching and Mortality to Industrial Effluent
(September 2014: Site 3) ...309

Figure 7.5.16 % Embryo Hatching and Mortality to Industrial Effluent
(January 2015: Site 1) ...313

Figure 7.5.17 % Embryo Hatching and Mortality to Industrial Effluent
(January 2015: Site 2) ...316

Figure 7.5.18 % Embryo Hatching and Mortality to Industrial Effluent
(January 2015: Site 3) ...319

Figure 8.5.1: Mean Number of Revertant Colonies Vs. Concentrations
(May 2014: Site 1) ...347

Figure 8.5.2: Mean Number of Revertant Colonies Vs. Concentrations
(May 2014: Site 2) ...350

Figure 8.5.3: Mean Number of Revertant Colonies Vs. Concentrations
(May 2014: Site 3) ...353

Figure 8.5.4: Mean Number of Revertant Colonies Vs. Concentrations
(September 2014: Site 1) ...356

Figure 8.5.5: Mean Number of Revertant Colonies Vs. Concentrations
(September 2014: Site 2) ...359

Figure 8.5.6: Mean Number of Revertant Colonies Vs. Concentrations
(September 2014: Site 3) ...362

Figure 8.5.7: Mean Number of Revertant Colonies Vs. Concentrations
(January 2015: Site 1) ...365
Figure 8.5.8: Mean Number of Revertant Colonies Vs. Concentrations
(January 2015: Site 2) ...368

Figure 8.5.9: Mean Number of Revertant Colonies Vs. Concentrations
(January 2015: Site 3) ...371