CHAPTER TWO

PHYSICAL AND HISTORICAL BACKGROUND
INTRODUCTION

In the ancient time, Allahabad was recognized as Prayag where, according to legend, at Brahma, God of creation, performed Ashwamedh Yajna (Horse Sacrifice). Therefore, it was called Prayag (meaning a place of sacrifice). The present district of Allahabad is named after its headquarter city. According to Badaun (a historian), Akbar founded Ilahabad when he visited Prayag in 1575. Others say that this word is corrupt form of Ilavasa (Ila being the name of the mother of Pururuvas Aila and avas means adobe) which in process of time became Ilahabad and then Allahabad.¹

PHYSICAL BACKGROUND

Location

Allahabad, a typical inland town of Uttar Pradesh, is standing on the confluence of the Ganga and the Yamuna; and occupies a strategic position in northern India. The Bay of Bengal lies about 450 miles away from Allahabad in the east while the Arabian sea is about 650 miles away in the west.

The district of Allahabad lies between Lat. 24°47’ N to 25°47’N and Long. 81°30’E to 82°21’E. The extent from east to west is 92Km. and the breadth from north to south is 101Km. (Fig. 2.1). The area of Allahabad district is 5482 at square Km., according to Census, 2001². The population of Allahabad district is 4936110. The northern boundary is formed by the district of Pratapgarh and Jaunpur. Pratapgarh district is separated from Allahabad district by the Ganga for a distance of about 35Km. On the east lies the district of Varanasi, on the south-east that of Mirzapur, on the south the state
Fig. 2.1: Allahabad Fringe Area and Related Blocks
of Madhya Pradesh and on the west that of Kaushambi (Fig. 2.1).

Site

The line of 82°47′ Longitude passes immediately to the east of city and Latitude 25°25′ runs to south of it. Thus Allahabad is lying about 100 miles north of the tropic of Cancer.

The present site of Allahabad owes its foundation in ancient Prayag which is closely related to the religious belief of the Hindus. The confluence of three sacred rivers (Tribeni), the Ganga, the Yamuna and the invisible Saraswati of the legend, has been recognized as a holy place since time immemorial. Tulsidas has described Prayag as ‘Tirath Raj’ in ‘Ramcharitmanas’. The annual Maghmela fair attracts million of the people and the number of devotees swells many times every twelfth year at the time of Mahakumbha.

Middle ages have witnessed the development of Allahabad as a strategic place having advantage of defence and administration. The city was considered to enjoy the special advantages of water protection. The site of Allahabad Fort built by Akbar in the last quarter of sixteenth century has the sense of defensive site. The strategic position of the city was also realised by British Government and they made city of Allahabad, as state capital.

The navigable waterways assisted to the development of city before the advent of Railways when the Ganga and the Yamuna were the important links between the upper and lower Ganga plain.

Situation

The site of Allahabad city enjoys two different geographical region of India the fertile alluvial plain of the Ganga in the north and the forest-clad hilly tract of Vindyas in the south. This relationship has affected the route pattern with potential modality. The physical
character of the region ensures the connection of north and south India through roads and rail routes. This has made the city a great collecting and distributing centre.

Administrative Structure

On the basis of administrative structure Allahabad district has been divided into 08 Tahsils, 20 development blocks, 218 Judicial Panchayats and 1425 village panchayats. There are 2802 habitable villages and 262 non-habitable villages. It has been divided into 2 parliamentary constituencies and 11 assembly constituencies. There are 13 townships, one Principal Corporation, one contentment area, 8 Nagar Panchayats and 2 census towns. The numbers of urban and rural police Stations are 17 and 22 consecutively. Allahabad district has the reputation of being an education centre with 2 universities and P.G. colleges, 53 degree colleges, 3 Industrial Training Institutes, 617 intermediate colleges, 1585 higher secondary schools and 2932 primary schools.

PHYSICAL ASPECTS

Physical aspects of the area is concerned with the study over time of the characters, processes and distribution of the ‘natural phenomena’ in the space accessible to human beings and their instruments i.e. lithosphere, hydrosphere, atmosphere and biosphere. Therefore, it becomes necessary to study the topography, soil, temperature, rainfall, vegetation, and rivers in the geographical background which affect social and economic landscape of the region. In fact, the geographical background of the district reflects the bond and inter-relationship between physical and human resources. The physical factors have crucial impact on the ecological balance. Therefore, it becomes necessary to study and understand the physical aspects of the region to reveal the facts and hierarchies of development of the region. The detailed study of the topographical
features of the study region reveals the natural advantages or disadvantages.

TOPOGRAPHY

The topography of Allahabad district may be divided into 3 parts:

(i) The Trans-Ganga or the Gangapar plain,

(ii) The Doab,

(iii) The Trans-Yamuna or Yamunapar tract.

All these three parts of the topography are formed by the Ganga and its tributary, the Yamuna, the latter joining the farmer at Allahabad, the confluence being known as Sangam.

Tran-Ganga (Or Gangapar) Track

Trans-Ganga tract of Allahabad District is formed by northern Tahsils of Soraon, Phulpur and Handia. The fringe area of Allahabad district in Trans-Ganga tract is concerned with some territory of Soraon. The southern boundary of this tract is formed by the Ganga. The general slope of the tract is towards the east and south. The highest altitude of this tract is 93.57m above sea level which lies at Jhusi. The slope of this section then imperceptibly drops to 89.30m above Sea-level at the Allahabad-Varanasi border near the grand Trunk Road.

There are broad strips of flood plain (Khadar) in vicinity of Jhusi and Nawabganj. This strip of Khadar is insignificant where the river flows close to the high bank. The high bank of the Ganga, which is generally broken by ravines and drainage channels, is covered with poor sandy soil full of nodular lime stone (Kankar). There is a broad depression of clay with stretches of *usar* (alkali-laden land unfit for cultivation) to the north of light loam belt (occurring north of high
bank and varies in width, which is broadest in Nawabganj and Jhusi) and extending to the district boundary. The northern limit of this belt, in Tahsil Handia, is formed by a high ridge which extends into district Varanasi. The water table in this region is high because of the water in excess collecting in innumerable lakes which makes the most noticeable feature of the area, especially in northern part. The surplus water of this depression drains northwards into to tributaries of the Sai, eastward into the Varuna and southward into Mansaita, the Bairagia and other effluents of the Ganga.

Doab

This tract of land is interfluves between the Ganga on the north and the Yamuna on the south, comprising the tahsils of Manjhanpur and Sirathu. The slope in this part is from west to east. The height of the slope is 104.54m. above sea level at the point where the Grand Trunk Road enters the district and this slop drops gradually to 96.07 m at Allahabad. There is narrow low alluvial plain between the Ganga and the high ridge which widens out into broad stretches of sand and silt elsewhere. A considerable area of this plain is generally not affected by floods. This part produces good rabi crops. The high ridge marking the flood bank of the Ganga is covered with gritty soils and is broken by innumerable ravines, some of which extend several kilometers inland.

As the level drops, inwards from the high ridge, the nature of the soil changes rapidly. The central depression formed by the valley of the Sasur Khaderi River is marked by an undulating belt of poor soil especially in its lower reaches near its confluence with the Yamuna where the ground is broken by a network of ravines. To the south of the central depression, the level rises towards the high bank of the Yamuna. Along the high bank of the Yamuna, specially near the border of Fatehpur, the ground is again broken by ravines. There
is extensive lowland which includes the basin of the Alwara Lake and meets the rocky outcrops of the Pabosa hills which flank the river.

Trans-Yamuna (or Yamunapar) Tract

Trans- Yamuna tract lies to the south of the river Yamuna. This tract forms a part of the Bundelkhand region and comprises the tahsils of Meja and Karchhana. Tons river forms the boundary between the tahsil of Karchhana and Meja. The high banks of the Yamuna and the Ganga form a ridge to the north of Karchhana which ranges from a Kilometer and a half to 5 Km. in width and is crowned with light sandy soil, full of kankar. This soil is scored by numerous ravines which carry off the water of the interior. A narrow strip of lowland (Kachhar) lies to the north of this ridge and it is more prominent near the confluence of the Ganga and the Tons and in the north-eastern part of the tahsil Meja. The upland (a strip of old alluvium) lies to its south comprising the central part of tahsil Karchhana and tracts of Chaurasi and Manda, Hitar in tahsil Meja. The ranges of Vindhyan series lie in 3 sections to the south of upland.

1. The Vindhyachal
2. The Plateau
3. The Panna Range.

The Vindhyachal range is the lowest one among all these three and starts rising boldly from the upland and extending in an irregular chain from Manda to Kohrar and beyond and reappearing in the south of Bara. The greatest elevation of Vindhyachal range lie at Baghla (in tahsil Karchhana) is being 188.06 m and in tahsil Meja being 182.88 m.

An irregular plateau of inferior mar and clay lies to the south of escarpment of Vindhyachal range. This Plateau is drained by a
small affluent of the river Belan named the Lapri. The surface of this plateau is broken by small hills and rocky outcrops.

The third range of the Vindyan series Panna range extends about 16 km. along the south border of the district Allahabad. The highest point of the Panna range is 371.24 m above sea level and the crest in most places exceeding 304.80m. The level of this range drops suddenly from 361.79m. at Parthia to 128.01 m. and about 1.5 km. to the north from 262.91m. from the hills south of Daiya Bahurahiya to 121.9 m at that place and from 352.34m. at Badokhar spur to 118.87 m. at Badokhar itself (Fig. 2.2).

Thus the topography of Allahabad district has remarkable differences in terms of slope; nature of rocks, soil and relief feature but being the part of middle Gangetic Plain contours doesn’t have remarkable contrast. The study of topographical details of the city of Allahabad reveals two broad units:

(i) The Uparhar (Upland),

(ii) The Kachhar (Lowland).

(i) **The Uparhar**

The Uparhar is composed of the older alluvium. It lies between 84m. and 96m above sea level. The Uparhar rises above the normal flood level and is bounded by the old high bank of the rivers, except for the area at the margins. The high ground at the Bhardwaj Ashram expresses the presence of a mighty river in past which was flowing by its side if not as a regular stream, at least while in spate during the rainy season. The Uparhar covers nearly two thirds of the area of the city and exhibits down slopes towards the margin from the centre of the city.

(ii) **The Kachhar**

The low land lying between the rivers and the high bank
Fig. 2.2: Allahabad Relief Features

Source: District Planning Map Series, NATMO
occupies an extensive area in the east and the north. During the rain season, these areas are prone to inundation but become dry in the winter and produce rich rabi crops.

Baxi and Beni bunds protect the southern part of the eastern Kachhar from flood. The whole area is below 84m. above sea level being lowest in the centre and rising slowly to the west and east. This part is rich in sandy and sandy clay soils and looks like an impounded lake.

These surface features have been formed by the bed of the Ganga whose main current has been artificially diverted towards the east by throwing up two embankments- one joining the fort with Daraganj, the other joining Daraganj with the high bank near the Prayag Railway Station. Daraganj is an extended landmass bordered in the east by the steep ‘Kankar’ impediment bank of the Ganga which rises 90.60m above sea-level. On the other side of the Ganga (at Jhusi), the bank is also of similar nature and elevation. It is supposed that once the river Ganga was flowing straight between Daraganj and Jhusi which was more or less similar to present course. It eroded its western bank later on and succeeded in cutting a wide channel west of the present land-mass of Daraganj. The successive floods had eroded the southern elongation of Daraganj near the confluence and Daraganj looked like an island when the river was flooded.

GEOLOGY

Geology of the region is concerned with the scientific study of the origin and nature of the earth’s crust, the rocks of which it is composed and the history of its development and changes. Geological structure affects geomorphologic features drainage pattern, soils and availability of minerals.

District of Allahabad presents geologically, a complex features.
No other district than Mirzapur has such a great complexity in Uttar Pradesh. The whole of the Gangapar (trans-Ganga) tract, a large portion of Doab, tahsil of Karchhana and the north eastern part of tahsil Meja are composed of Gangetic alluvium. Its deposition commenced in Pleistocene period (after the final upheaval of the Himalayas) and is still continuing. The gangetic alluvium consists of alterations of fluvial deposition of sand, silt and clay. Nodular concretions of calcium carbonate form large to small lenses within many altercations. The thickness of alluvium increases from south to north which varies up to few hundred meters (Fig.2.3).

The southern part of the doab especially pargana Atherban is made up of the alluvial detritus of the Vindhayas. This Vindhyan rock series extends to the north of the Yamuna. In the Yamunapar (trans Yamuna) tract the Vindhyan detritus merges in the Gangetic sand and silt. The resultant blend of these detritus is well marked in the western part of pargana Arail and the eastern part of pargana Bara. The superimposition of various rock formations like alluvium (recent), lateritic capping over rock outcrops (Sub-recent), Kaimur sandstones and orthoquartzites (upper Vindhya) are found in Yamunapar tract. The massive Kaimur sandstones of a light reddish colour are abundant in the upper stratum of the Vindhyachal range. The stones are fine textured, soft and easily workable. These are suitable for building or architectural work. Jhiri Shales (an upper shaly band) and Panna Shales (an intermediates band forming the lower Rewah sandstones) are characteristic features of the plateau. The massive sandstones forms the Panna range (The upper Rewah Group) which is similar to Vindhyachal range but attains a greater elevation. Abundance of outcrops of stalagmites is found near many of the northern and southern slopes which are burst in order to obtain lime.

The Kaimur sandstones silicified into orthoquartzites and disposed horizontally or sub-horizontally, are presumed to overlie the
Fig. 2.3: Geology of Allahabad

Source: District Planning Map Series, NATMO
unexposed greater part of the Vindhyan system. The platform for younger sediments and Gangatic alluvium deposits in the north of Yamunapar tract are supposed to be formed by those rocks. The southern fringe of alluvium looks bedded over sandstones. A drill in the alluvium at a depth of more than 152m exhibit the bed rock which shows that old topography (prior to the deposition of the Gangetic alluvium) generally sloped northwards. Highly friable sandstone are found at places giving rise to loose, whitish, fine to medium sand. At some places thin, pisolitic to massive red and lateritic capping is conspicuous on the sandstone tops, as seen in small detached lumps or hillock between Chak Ghurpur and the Yamuna as result of the concentration of hydrated iron oxide by the action of sub aerial agencies.

MINERALS

Some of the mineral products commonly found in Allahabad district are as follows:

(i) Glass Sand,

(ii) Building Stones,

(iii) Kankar,

(iv) Brick and Pottery Earth,

(v) Reh.

(i) Glass Sand

The deposits of some of the best glass sands are found in tahsil Karchhana specially in neighbourhood of Shankergarh and Lohgera. The whitish sand being derived from the friable sandstone in the area meet the requirements of most of the glass factories in northern India.

(ii) Building Stones

An excellent variety of building stone found in the region is the
Kaimur sandstones. These sandstones lie in the beds varying in thickness between 150mm. to 2.5m. These are extracted either by blasting or by the splitting. The chief quarries (open excavation on the surface of the earth, worked usually for extraction of rocks and certain non-metallic minerals) are localised at Sheorajpur.

(iii) **Kankar**

Kankar is available throughout two of the physiographic region i.e. Doab and Yamunapar tract. The bed providing better quality of Kankar are found in tahsil Karchhana in the neighbourhood of Lawain and Banswar.

(iv) **Brick and Pottery Earth**

The brick and pottery earth are available in the alluvial tract of Gangapar doab and Yamunapar region of the study area. These are used for the manufacturing of bricks and earthwares. This makes the city of Allahabad famous for its bricks and tiles.

(v) **Reh**

Reh is found as a white encrustation in the usar land especially in the trans Ganga tract. Soda ash is the main extract of Reh. Soda ash is used in the making of soap and glass, for the treatment of hard water, in the dying industries. When the reh is rich in sodium Sulphate it is used for the extraction of Sulphur. Dhobis also use reh in its slightly purified form as a substitute for soap.

RIVER SYSTEM

River system of any area is directly related with the topography and geological structure of rocks and surface. The relief features also have a prominent impact on the drainage system. According to Professor Stamp (1962), the structure and morphology of the surface of any region are closely related to each other and they largely affect the drainage system.
The rivers of the study area are guided by the geological structure and topography of the region. The rivers belong to the main system of the Ganga and its tributaries specially mainly the Yamuna and the Tons (Fig. 2.4).

The Ganga

The general slope of the study area trends from west or north-west to east and South east. The Ganga also follows the same trend. The river used to touch the district about 4.8 km. north of Afzalpur Saton (a village in tahsil Sirathu) and forming the northern boundary of the district for about 35 Km. when Koushambi was not a separate entity as a district and was part of Allahabad district. Now, the Ganga enters the district in the north of Basenhi village (Chail Tahsil, Kaushambi) and at Akhairajpur Kachhar village (Soraon Tahsil) and before reaching the cantonment area of Allahabad district it forms boundary between Chail in the South and Soraon in the north. After- ward it takes a sharp bend as far as Phaphamau. There it again bends sharply to the south and is joined by the Yamuna near the fort. This area of confluence is known as Sangam which has significant religious value. It turns after confluence again to south-east wards and forms boundary between the tahsils of Phulpur in the north and Karchhana in the south. After reaching Laktaha (in tahsil Karchhana) it turns south wards and forms boundary between tahsil of Handia and Karchhana till its junction with the Tons at Sirsa. Onward Sirsa it takes a north- easterly bend and runs on in the same direction to Lachchhagir where it turns south-eastwards till it reaches Tela after which if separates district of Allahabad from Varanasi and runs southward for about 13. Km. and then eastward for about 6 Km. The Ganga leaves the district of Allahabad about 3 Km. north-east of Manda railway station.

The Ganga continuously shifts its channel within its wide beds
of Kachhar, dhar dhura or deep stream. The old beds of the Ganga can be seen near the mouth of the Tons. During the monsoon season, the Ganga flows full bank attaining a width of 3 to 5 Km. but in winter and the hot weather it shrinks considerably, breaking up into 2 or more channels. The Ganga becomes fordable during summer but the position of fords changes every year due its shifting course. The ravines penetrate the high bank which are more prominent near its confluence with Tons. The length of the Ganga in the district is about 105 Km.

Tributaries of The Ganga

The tributaries of the Ganga which join it at different places are as follows:

Bara

Bara rises from a lake near Panwari in tahsil Karchhana. This is a large nullah and runs towards the north east through the pargana of Bara to join the Ganga worth of Mungari.

Bairagia

It has its source in the clay tract of pargana Mah (near Saidupur) and derives its name from its wandering course. Bairagia runs eastwards to Sarai Imalia where it turns towards the south. It enters pargana Jhusi at Jamsedpur and leaves it near Dhokri to run through tahsil Handia and joins the Ganga near Damdama. It’s a seasonal river and contains water only during the rainy season.

Mansaita

The Mansaita rises near Chak Mohiuddinpur (in pargana Sikandara) and runs westwards as far as Sarai Sultan Muhammad (in Pargana Sikandara) where it is joined by the Bundi nullah. Running southwards it is joined by several water courses, the prominent being the Narsinghaban near Buwapur the Bhulaiya and the Barwa on its
right and Khara on its left. It joins the Ganga at Jhusi just before which it receives the waters of the Aughar.

Andua

This is a small affluent of the Ganga which rises near Birapur (in tahsil Handia) and runs eastwards to join the Ganga to the west of Lachchhagir.

Binsari

This small tributary of the Ganga rises near Madhopur (in pargana Soraon) and runs south-eastwards. It is crossed by the Allahabad Unchahar Branch line of Northern Railways before its joins the Ganga to the west of Phaphamau Bridge.

Gandari is also an insignificant tributary of the Ganga which flows in Handia.

Tons is the main tributary of the Ganga and first touches the southern boundary of the district near Deora. It separates the district of Allahabad for 8 Km. from Madhya Pradesh then leaves the district to re-enter near Kundari (in tahsil Meja) from where it runs north-eastwards in an irregular course for about 64 Km. to join the Ganga near Sirsa. It carries boulders which makes it un-navigable inspite of carrying considerable volume of water. During rainy season when it flows bankful its width becomes 365 m. which narrow down to 137m. in dry season. At some places this breadth narrows upto 36m. Its banks are generally steep and ravines. It is joined by several small streams and hill torrents, the prominent being the Loni, Katha and Patpari, etc.

The Yamuna

The Yamuna is the chief tributary of the Ganga in Allahabad district. The Yamuna is also known by other names as Kalindi. It is personified in Hindu mythology as Suryatanya the daughter of Surya
(The God Sun)\(^5\) and as Yamasvasa, the sister of Yama (the lord of
death). It first touches the village Pratappur in the district of
Allahabad running towards the west-east and forms the common
border with the district of Banda and Koushambi. After entering the
district it forms boundary between district Koushambi and the tahsil
Karchhana of Allahabad district. It continues in the same direction
and is joined by the Saraoli, a small nullah which rises from the hills
near Kolahi (in tahsil Karchhana). Afterwards it takes easterly
direction and its affluent Jhagrabaria joins it on its right between
Jagdishpur and Birwal (both in tahsil Karchhana). It then turns
slightly south-eastwards and at Deoria (in tahsil Karchhana) is
joined by the Gahera nullah. About midstream here there is a high
and rocky with an old kiosk. It takes a sharp bend towards north
from Deoria and flows towards north. It is joined by the Sasur
Khaderi on its left near Allahabad. It is crossed by a bridge of the
Northern Railway at Naini and joins the Ganga on its right near
the fort after flowing 2.5Km.

The Yamuna differs form the Ganga in terms of steepness, flow
and channel. The Yamuna flows with a more constant channel within
steeper banks and with a more rapid flow than the Ganga. It
contains much less silt than Ganga with clearer water. The fall from
the high bank to the level of the river is generally 10 to 12 m. Its
average width is about 2.5 Km. which becomes about 9 Km. during
dry season.

LAKES

The Trans-Ganga tract is rich in disconnected series of large
and shallow lakes because of the inadequate outlets for the surface
water.

The chief lakes are Jogital near Semra Bibrhanpur, Masiaon
and Raiya in paragana and tahsil Soraon. The lakes Ananchha, Dani

(62)
Fig. 2.5: Aquifers in Allahabad
Tal, Mijheora, Mailahna, Ranwai, Sahadawa Jhauchand and Basaudha are located in paragana Jhusi and tahsil Phulpur whereas Basua and Kazipur lakes lie in paragana Mah and tahsil Handia.

The lakes Keni, Upardha and Baraut fall in paragana Kewai and tahsil Handia. The lakes of Doab in district Allahabad lie at Amelia Kalan, Jora, Lahadi Sakari and Sonai in tahsil Meja. There are no large lakes in the trans-Yamuna tract in district Allahabad. Level of ground water fluctuates resulting in different aquifers (Fig. 2.5).

CLIMATE

Climate is the average weather conditions throughout the seasons over a fairly wide area of earth surface and considered over many years (usually 30 to 35 years). The study area occupies a central position within northern Indian plain. Thus lying at a distant place from the seas and hundreds of miles away in the north from the tropic of concern the district of Allahabad is characterized by a long hot summer, a fairly pleasant monsoon and cold season. In true sense, the climate here is transition between dryness of Rajasthan and dampness of West Bengal. (Fig. 2.6). The weather is quite comfortable from November to the middle of March as the mean temperature conditions are more or less similar to those of an English summer. The temperature begins to rise very rapidly in the latter half of March and attains high mercury by the end of May making the district one of the hottest place of northern India. The summer extends from March to mid June. The south-west monsoon bursts in the mid-June and brings a remarkable change in the weather. The mercury shows a drop of 10\(^\circ\) F to 15\(^\circ\) F within a few days and remains more or less constant for next three monsoon months. The excessive humidity in the atmosphere from July to September makes the weather uncomfortable. The muggy condition
Fig. 2.6: Climatic Map of Allahabad

Source: District Planning Map Series, NATMO
prevails during October. The climate elements resulting from interrelationship of latitude, altitude, the spatial distribution of land and sea, ocean currents, relief, soil and vegetation are under scope of discussion in the present chapter. These elements are as follows:

(i) Temperature,

(ii) Humidity (covering clouds, evaporation precipitation, water etc.),

(iii) Atmospheric pressure,

(iv) Winds.

(i) **Temperature**

Temperature as a climatic element is the degree of sensible heat or cold in the atmosphere. The Temperature of Allahabad varies considerably in different months.

Variation in Temperature Conditions

Temperature conditions vary considerable during a different seasons. Temperature begins to fall rapidly from middle of November (mean daily max. 28.6°C, mean daily min. 12.6°C) and in the coldest month of January the mean daily maximum and minimum is 23.7°C and 8.6°C consecutively and an average daily mean temperature is 16.11°C. The temperature rises from the next month of February. It rises from 18.3°C in February to 24.7°C in March, 30.6°C in April and 34.4°C in June, 30°C in July 28.9°C in August 27.4°C in September, 25.7°C in October and 16.3°C in December.

The temperature conditions of Allahabad are so fluctuating that these average monthly figure give quite on speculative picture of the whole situation. An analysis of the mean daily maximum and minimum temperatures of different months of the year would give a vivid understanding of temperature condition. (Table 2.1)
Table 2.1
Variation of Temperature in Allahabad

<table>
<thead>
<tr>
<th>Month</th>
<th>Mean Daily Maximum</th>
<th>Mean Daily Minimum</th>
<th>Mean Daily Range</th>
<th>Highest Ever Recorded with Dates</th>
<th>Lowest Ever Recorded with Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>23.7</td>
<td>8.6</td>
<td>15.1</td>
<td>31.1 Jan 29, 1934</td>
<td>2.2 Jan 20, 1936</td>
</tr>
<tr>
<td>February</td>
<td>26.3</td>
<td>10.7</td>
<td>15.6</td>
<td>36.1 Feb 27, 1896</td>
<td>1.1 Feb 2, 1905</td>
</tr>
<tr>
<td>March</td>
<td>33.2</td>
<td>16.3</td>
<td>16.9</td>
<td>41.7 Mar 30, 1931</td>
<td>7.2 Mar 2, 1906</td>
</tr>
<tr>
<td>April</td>
<td>39.1</td>
<td>21.6</td>
<td>17.5</td>
<td>45.0 Apr 26, 1931</td>
<td>12.8 Apr 3, 1905</td>
</tr>
<tr>
<td>May</td>
<td>41.8</td>
<td>26.8</td>
<td>15.0</td>
<td>47.2 May 21, 1922</td>
<td>17.2 May 11, 1924</td>
</tr>
<tr>
<td>June</td>
<td>39.4</td>
<td>28.4</td>
<td>11.0</td>
<td>47.8 June 12, 1901</td>
<td>19.4 June 21, 1930</td>
</tr>
<tr>
<td>July</td>
<td>33.4</td>
<td>26.6</td>
<td>6.8</td>
<td>45.6 July 1, 1901</td>
<td>22.2 July 22, 1955</td>
</tr>
<tr>
<td>August</td>
<td>31.9</td>
<td>25.9</td>
<td>6.0</td>
<td>40.1 Aug 1,</td>
<td>21.1 Aug 23, 1953</td>
</tr>
<tr>
<td>September</td>
<td>33.0</td>
<td>24.8</td>
<td>8.2</td>
<td>39.4 Sep 22, 1928</td>
<td>12.3 Sep 12, 1912</td>
</tr>
<tr>
<td>October</td>
<td>32.4</td>
<td>19.6</td>
<td>13.8</td>
<td>40.6 Oct 3, 1896</td>
<td>11.7 Oct 31, 1898</td>
</tr>
<tr>
<td>November</td>
<td>28.6</td>
<td>12.6</td>
<td>16.0</td>
<td>35.6 Nov 4, 1918</td>
<td>5.6 Nov 30, 1941</td>
</tr>
<tr>
<td>December</td>
<td>24.3</td>
<td>8.6</td>
<td>15.7</td>
<td>31.1 Dec 2, 1946</td>
<td>2.2 Dec 28, 1902</td>
</tr>
<tr>
<td>Annual</td>
<td>32.3</td>
<td>19.2</td>
<td>13.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The figures in the table 2.1 indicate that the average day temperature at Allahabad ranges from 23.7°C in January to 41.8°C in May while night temperature fluctuates from 8.6°C in January to 28.4°C in June. The average day temperature decreases after May and the average night temperature decreases after June. The table (2.1) reveals that the days in the winter are colder than nights in the summer (Fig. 2.7).
Diurnal Range of Temperature

The mean daily range of temperature also varies from month to month and from season to season (Table 2.1). The highest range of temperature is recorded during the April as the temperature keeps up rising but nights are still pleasant. The lowest range of temperature is recorded during August which is the monsoon period. The mean daily range of temperature remains low almost during the monsoon period. The average daily temperature ranges between 13.8°C to 17.5°C from October to May but with the arrival of South West Monsoon around 15 of June, it begins decreasing from 11°C in June to 8.2 in September. A glance at the highest and the lowest ever recorded temperatures (Table 2.1) exhibit pretty variability owing to the unpredictable nature of weather due to climatic changes.

Trends in Temperature

The nature of the mean maximum temperature of Allahabad has been oriented towards decline with its average value being 35.58°C during whole period from 1880 to 1950. So far as the minimum temperature is concerned it is on the way to increase at
the rate of 0.15°F per year, its average value being 24.3°C. ‘Thus during the summer, days are cooler now than before the nights are getting warmer’. This observation was made in 1950 but presently days are also getting warmer.

During the winter, the mean maximum and minimum temperature is on the increase being 25.8°C and 10.52°C consecutively over the whole period. ‘Thus during the winter both days and nights are getting warmer’.10

Pramanik and Jagannathan see ‘no general tendency for a systematic increase or decrease in maximum and minimum temperature’.11

RAINFALL

Rainfall in any region is the quantity of rain falling in a certain time within a given area. It affects the natural landscape in terms of vegetation, crops and physical landscape. The district of Allahabad has rain-gauge stations at Allahabad, Handia, Karchhana, Meja, Phulpur and Soraon. These stations have records ranging from 70 to 100 years. The details of the rainfall for the district as a whole are given in the Table 2.2.

Table 2.2

<table>
<thead>
<tr>
<th>Month</th>
<th>Normal Rainfalls (in mm.)</th>
<th>Average Number of Rainy Days (Days with Rains of 2.5 mm or more)</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>17.1</td>
<td>1.5</td>
</tr>
<tr>
<td>February</td>
<td>18.9</td>
<td>1.8</td>
</tr>
<tr>
<td>March</td>
<td>8.0</td>
<td>0.8</td>
</tr>
<tr>
<td>April</td>
<td>5.4</td>
<td>0.5</td>
</tr>
<tr>
<td>May</td>
<td>8.5</td>
<td>0.7</td>
</tr>
<tr>
<td>June</td>
<td>81.5</td>
<td>4.1</td>
</tr>
<tr>
<td>July</td>
<td>301.6</td>
<td>13.6</td>
</tr>
<tr>
<td>Month</td>
<td>Normal Rainfalls (in mm.)</td>
<td>Average Number of Rainy Days (Days with Rains of 2.5 mm or more)</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>August</td>
<td>300.5</td>
<td>13.7</td>
</tr>
<tr>
<td>September</td>
<td>181.7</td>
<td>8.0</td>
</tr>
<tr>
<td>October</td>
<td>38.8</td>
<td>1.9</td>
</tr>
<tr>
<td>November</td>
<td>7.1</td>
<td>0.6</td>
</tr>
<tr>
<td>December</td>
<td>6.3</td>
<td>0.6</td>
</tr>
<tr>
<td>Annual</td>
<td>975.4</td>
<td>47.8</td>
</tr>
</tbody>
</table>

About 88 percent of the annual rainfall in Allahabad district is received during the monsoon season, 80 percent of which is received during July, August and September. The normal rainfall during a year is 975.4 mm (38.40”). The rainfall decreases from the south-east to the north-west (Fig. 2.6 and 2.8).

![Fig. 2.8: Rainfall in Allahabad](image)

The Monsoon Period

Normally the monsoon commences in the district of Allahabad at June 15 or in the third week of June and lasts upto the end of September with occasional breaks and variable intensity. Sometimes it approaches the city in the end of June but arrived at June 10th in
2008 as the monsoon scaled whole the country in record 15 days. Usually monsoon takes duration of one month to spread all over the country. It has broken the record of 107 years as the low pressure has been built up due to unusually hot March, April, and May. The monsoon period is credited with 39.4 rainy days out of an average total of 47.8 rainy days in a year. In other words, this is the rainiest period in Allahabad.

The mean monthly total of rainfall during each month of rainfall varies from 81.5mm in June to 301.6 mm in July, 300.5 mm in August and 181.7 mm in September. October is relatively a dry month and receives rainfall of 38.8 mm on an average.

Variability of Rainfall

Like temperature, the average monthly rainfall also does not give the real picture of the distribution of rainfall during a period of one month. For instances, the highest rain recorded for June was 527.81mm in 1901 while the lowest amount recorded was 0.51 mm. August received only 50mm of rain in 1983 as against 77.47 mm in 1891 and October, relatively a drier month received 57.65 mm of rain in 1894.¹²

Intensity of Rainfall

Allahabad receives the rain with varying intensity from year to year. The heaviest rainfall recorded at Allahabad rain gauge station within 24 hours was 393 mm in July 30, 1875 while the figure at Meja rain gauge station was 512.1 mm on June 22, 1916. Similarly, the heaviest rainfalls recorded in 24 hours in July and August are 209.55mm and 228.6 mm respectively, which is little less than the average monthly rainfall in those periods.

Character of Rainfall

The character of rainfall in Allahabad is intermittent. There is
the long interval between two rainy days in a month. The weather remained almost dry for the first ten days, in August 1945, after which it rained almost everyday. There is a general tendency of 2 to 5 days interval between two rainy days in monsoon period.

Winter Rainfall

The winter rainfall period is usually considered from November to February. These months usually receive 11.45 percent of the total rainfall of the year. Of these four months, November is the wettest month with 30.21 mm rain. February is the driest month with 15.77 mm rain. December and January receive 22.98 mm and 16.81 mm rainfall consecutively. These figures are average of ten years (1986-96) (Fig. 2.6).\(^1\)

(ii) Relative Humidity

Relative humidity is directly proportional to content of moisture available in the atmosphere. Therefore, it varies from season to season depending upon the presence of percentage of moisture in the atmosphere. The air is very humid during the monsoon season when the relative humidity is 70 to 80 percent. When the monsoon is over, the relative humidity decreases progressively and in the hot season the air becomes very dry and the humidity, especially in the afternoon goes down to 20 percent or less (Table 2.3).

<table>
<thead>
<tr>
<th>Table 2.3</th>
<th>Relative Humidity in Allahabad (Average of Ten Years, 1986-1996)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
<td>Relative Humidity (in percent)</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td>January</td>
<td>81</td>
</tr>
<tr>
<td>February</td>
<td>68</td>
</tr>
<tr>
<td>Month</td>
<td>Mean</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>March</td>
<td>48</td>
</tr>
<tr>
<td>April</td>
<td>37</td>
</tr>
<tr>
<td>May</td>
<td>39</td>
</tr>
<tr>
<td>June</td>
<td>55</td>
</tr>
<tr>
<td>July</td>
<td>76</td>
</tr>
<tr>
<td>August</td>
<td>81</td>
</tr>
<tr>
<td>September</td>
<td>84</td>
</tr>
<tr>
<td>October</td>
<td>72</td>
</tr>
<tr>
<td>November</td>
<td>66</td>
</tr>
<tr>
<td>December</td>
<td>79</td>
</tr>
</tbody>
</table>

Source: Air force station, Bamrauli, Allahabad.

The relative humidity also varies in different period of day and night. The drier months have a larger range between the morning and afternoon humidity than that of wet month (Table 2.3). It is noticeable that in July and August there is markedly no difference in relative humidity between morning and evening but the corresponding figures in drier month attain wide differences (Fig. 2.9).

Fig. 2.9 : Relative Humidity in Allahabad
(iii) Atmospheric Pressure

The lowest atmospheric pressure in Allahabad, 992.6mb is recorded in May after which the barometer begins to rise till December when the highest atmospheric pressure of 1006.8 mb is recorded. After this month a regular fall in the atmospheric pressure is observed. The regular atmospheric pressure in Allahabad also oscillates remarkably. With utmost regularity at, it rises from 4 am till half past 9 in the morning, falls until 5 p.m., rises again till 10 p.m. and then falls again till 4 a.m. in the morning.

(iv) Winds

The winds are generally light throughout the year with some increase in the velocity in the summer, particularly in the afternoon and the south-west monsoon season.

Direction of Winds

The winds in Allahabad predominantly blow from the west or north-west from November to April. Easterlies and north-easterlies appear by May. In the monsoon season, the direction of winds is either south-west to west or north-east to east. The easterlies and north-easterlies become less frequent by October.

Velocity of Winds

Allahabad remains calm for a greater part of the year. The clam days accrue high numbers and their frequency varies from season to season. The winter months account a greater percentage of calm days than those of the summer and rainy days. November has the highest percentage of calm days (45 percent) than those of summer and rainy season. The number of calm days drops gradually to 30 percent in January and 15 percent or less from February to September.
The mean wind velocity for Allahabad is the highest in June, being 8.7Km/hr. and the lowest in November being 2.7 Km/hr. The mean annual wind velocity is 5.7 Km/hr. The mean wind velocity increases from November to June and after which decreases until November (Table 2.4 and Fig. 2.10).

Table 2.4

The Velocity of Wind in Allahabad

<table>
<thead>
<tr>
<th>Month</th>
<th>Velocity (in Km/hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>4.2</td>
</tr>
<tr>
<td>February</td>
<td>5.0</td>
</tr>
<tr>
<td>March</td>
<td>6.0</td>
</tr>
<tr>
<td>April</td>
<td>6.6</td>
</tr>
<tr>
<td>May</td>
<td>7.6</td>
</tr>
<tr>
<td>June</td>
<td>8.7</td>
</tr>
<tr>
<td>July</td>
<td>7.7</td>
</tr>
<tr>
<td>August</td>
<td>6.9</td>
</tr>
<tr>
<td>September</td>
<td>6.0</td>
</tr>
<tr>
<td>October</td>
<td>3.7</td>
</tr>
<tr>
<td>November</td>
<td>2.7</td>
</tr>
<tr>
<td>December</td>
<td>3.2</td>
</tr>
<tr>
<td>Annual</td>
<td>5.7</td>
</tr>
</tbody>
</table>
Other Weather Phenomena

In summer season, the gusty hot winds, locally known as 'loo' with a speed of about 65 Km/hr. blowing from westerly and north-westerly direction, are among the chief weather phenomena in Allahabad. The winds generally blow after 10 a.m. until sunset and bring in great discomfort. Dust-storms and thunder storms are other local phenomena. Severe dust storms, also known as 'Andhis' sometimes occur during the summer season and its speed crosses 60 Km./hr occasionally. Some of the monsoon depressions especially in the early part of the reason which originate in the Bay of Bengal and move across the country affect the district causing widespread and heavy rain. Sometimes, thunder storms accompanied by squalls, occur in the summer and during the monsoon months as well. In the winter season the mornings are occasionally foggy and thunderstorms and dust storms accompanied by squalls and hail occur in association with the passage of western disturbances. (Table 2.5)

Table 2.5
Frequency of Thunder, Hail, Dust-Storm, Squall and Fog in Allahabad

<table>
<thead>
<tr>
<th>Month</th>
<th>Thunder</th>
<th>Hail</th>
<th>Dust-storm</th>
<th>Squall</th>
<th>Fog</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>1.7</td>
</tr>
<tr>
<td>February</td>
<td>3.0</td>
<td>0.5</td>
<td>0.3</td>
<td>0.5</td>
<td>0.9</td>
</tr>
<tr>
<td>March</td>
<td>2.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>April</td>
<td>2.0</td>
<td>0.0</td>
<td>0.7</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>May</td>
<td>3.0</td>
<td>0.1</td>
<td>2.0</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>June</td>
<td>8.0</td>
<td>0.0</td>
<td>1.5</td>
<td>3.0</td>
<td>0.0</td>
</tr>
<tr>
<td>July</td>
<td>11.0</td>
<td>0.0</td>
<td>0.3</td>
<td>0.6</td>
<td>0.0</td>
</tr>
<tr>
<td>August</td>
<td>7.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.6</td>
<td>0.0</td>
</tr>
<tr>
<td>September</td>
<td>8.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>
SOIL

Soil is an important and omnipresent resource. It has played very crucial role in the development of civilization. The landscape of any region and its progress depends on the soil. The base of agricultural activities and animal husbandry lies on the availability of the soil. The soil is result of interaction between vegetation and rocks. It affects the land use pattern of any region. The soil of district Allahabad can be divided as follows (Fig. 2.11):

1. Khadar Soil of the Ganga or Older Alluvium Soil
2. New Alluvium Soil of the Ganga or Young Alluvium Soil
4. Soil of the Upper Gangetic Tract
5. Soil of the Lower Gangetic Tract
7. Soil of the Yamuna's Plain Tract
8. Dark and Shallow Black Soil

1. **Khadar Soil of the Ganga**

These soils are widespread in the flood affected region of the Ganga. These soils have been formed by the sediments of the Ganga. These are new alluvium or sandy soils. The Khadar soil is very extensive in the east but narrows down in the west. It has an

<table>
<thead>
<tr>
<th>Month</th>
<th>Thunder</th>
<th>Hail</th>
<th>Dust-storm</th>
<th>Squall</th>
<th>Fog</th>
</tr>
</thead>
<tbody>
<tr>
<td>October</td>
<td>0.6</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>November</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>December</td>
<td>0.7</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>1.6</td>
</tr>
<tr>
<td>Annual</td>
<td>47.3</td>
<td>0.8</td>
<td>5.1</td>
<td>9.8</td>
<td>4.7</td>
</tr>
</tbody>
</table>

Fig. 2.11: Distribution of Soils in Allahabad District
extension of 16 km. in the Gangapar tract. These soils are characterized by low water retention capacity. It contains 1 to 2 percent of calcium. This soil is favourable for Rabi crops especially wheat, barley and pulses. The lower bank of the Ganga is very rich in sandy soils through which the water is percolated very deep but due high level of water table. These soils are very much conducive in the production of vegetables, water melons and cucumber. These soils need regular fertilization.

2. New Alluvial Soil of the Ganga

These soils are aligned to the parallel of Khadar soils in the narrow strip lying in the lower tract of the Ganga. This tract is affected by the flood every year and hence there is deposition of new silts which forms the new alluvial soil. It's also named as loam soil. The cracks are developed in these soils after the flood is over and vanish with the arrival of rain. These soils are deficient in Carbon and Nitrogen. These are fertile soils Rabi and Kharif crops are grown in these soils.

3. Soils of the Gangetic Plain Tract

These soils are extended in the east and west direction at the margin of new alluvial soil. These are two layered soils. Upper layer is sandy and lower layer is clay soil. The colour of soil varies from red to brown. These soils are rich in bases and calcium and are fertile. Crops of Jwar, Bajara, pulses, wheat, and sugarcanes can be produced with the application of carbonic fertilizers.

4. Soil of the Upper Gangetic Tract

These soils are present in the Gangapar and doab tracts. These soils are formed of old alluvial and loam soils. The colour of this soil is brown or brownish red. These soils are deficient in calcium, organic matter and nitrogen. With the application of fertilizers these
soils can be made fertile. The prominent crops of this soil are wheat, barley and sugarcanes.

5. Soils of the Lower Gangetic Tract

These soils are basically formed of the small stones, concretes, sands and clay that are deposited after the erosion of the upper tract. These are usually wet lands because of no proper outlets of the water. The paddy crop is much popular in this tract and makes it the 'bowl of rice' in the district. This tract is extended in tahsil Soraon, and Phulpur.

6. Khadar and New Alluvial Soil of the Yamuna

Like the Khadar of the Ganga, Khadar of the Yamuna is also formed of sediments of flood. The soil has abundant of concrete and coarse grained sands and has red or brown colour. These soils are chiefly used as building materials. These soils are extended in some parts of tahsils of Meja and Karchhana. These soils are not fit for agricultural purposes and only those areas where clayey loam is deposited, the agriculture is practiced.

New alluvial soils of the Yamuna are formed by the deposition of sediments in the flood affected region. These soils are extended in a narrow strip along the Khadar soil. These soils are rich in clay and are fertile. This soil is usually of black colour. Rabi (Wheat, barley, gram, peas) and Kharif (Jwar and Bajara) crops are grown in these soils. Vegetables are also produced.

7. Soil of the Yamuna's Plain Tract

These soils are usually found in plain areas of Karchhana tahsil along the khadar soil. These soils constitute loam and clay and are of reddish brown or dark brown. There are the rocks of Vindhyan series at the base of the soil. The crops grown in these soils are gram, mustered, maize and Jwar etc. The areas with the irrigation
facilities also produce rice and vegetables.

8. Dark and Shallow Black Soil

Dark black soils are extended in southern part of tahsil of Meja and Kaundhiari block of Karchhana tahsil. These soils are formed of loam soils, which are old alluvium. These soils are black coloured because of availability of iron. These soils are extended on small hills and mounds. Only proper irrigation facilities lead to agricultural activities. These soils are suitable to grow rice, gram, maize and Jwar. Khadar and alluvial soils are also formed by other rivers but they are scanty.

VEGETATION

Vegetation is an integral part of the landscape and plays a dominant role geographically and economically. Directly or indirectly, it affects human life. The products of forests contribute to the economic affluence. Natural vegetation conserves the soil by controlling the flow of water and maintains the genetic pools of vegetation. The behaviour of climate is controlled by the vegetation. National Forest Policy of India, 1988 emphasizes the role of vegetation for ecological balance.

The area under forests in Allahabad district in 1963-64 was 15801 hectares when the district of Kaushambi was part of Allahabad. After separation of Kaushambi as a district the area under forest reduced to in 2001 and 8589 hectares in 2002-2003 and 8221 hectares in 2004-05. Thus there is general tendency of decrease of forested land. This decrease in forest area owes to a number of causes. People cleared forests for mainly agricultural purposes. Most of the forested land falls under rural areas, being 8145 hectares only 76 hectares of the land belong to urban areas. Till the beginning of the 19th century patches of Dhak (Butea monosperma) were found in Trans Ganga tract mostly between
Phulpur and Sarai Mamrez, along the bank of Sasur Khaderi in the neighbourhood of the Alwara lake in tahsil Manjhanpur and tahsil Sirathu which is now part of Kaushambi district but most of them were cleared for agricultural purposes during the following decades. The right bank of the Ganga has patches of babul (Acacia Arabica). Forests, mostly now exist only in the Trans Yamuna tracts in tahsil Karchhana and the southern tract of tahsil Meja.

The chief varieties of trees found in these forests are Babul, Baherea (Terminalia bellerica), Chiraunji (Buchanania lonzon), Harra (Tarminatia cheblila), Khair (Acacia coatechu), Salai (Boswellia serrata), Semal (Salmalia malabarica), Mahua (Madhuka indica), Kanju (Holoplelea inegrifolia), Aonla (Emblica Officinalis), Kakor (Ziziphus glabersima) and Dhak etc. Grass and shrubs grow in thick forests of Ber (Zizyphues mauritiana), Tendu (Diospyros melonoxylon), Jamun (Syzygium cuminii), Mango (Mangifera indica), Mahua, Salai, Gular (Ficus glamerata) and Bamboo (Bambusa species) in upland of tahsil Meja. Haldi (Curcuma amada), Chhagon (Ougeinia soojeinsis) and teak (Tectora grandis) are also found.

WILD LIFE

The wild life of the district has depleted considerably owing to the shrinking of forest and reckless shooting the past. The number and species of wild animals are much greater in Trans-Yamuna tract and especially along the banks of the Ganga than elsewhere in the district. The tiger visits the district form Mirzapur or Madhya Pradesh. The main animals found in the district are bear, chinkara, Sambar, Hyaena, Indian blank buck, boar, milai or blue bull, fox, hare and Sahi or Indian porcupine.

HISTORICAL DEVELOPMENT OF ALLAHABAD

The city of Allahabad and environ was famous by the name Prayag, a place of sanctity and worship. Kalidas has written in his
epic 'Raghuvarsham' about Prayag at length. The early Sanskrit texts speak highly of Prayag and Tribeni. Rama spoke to Lakshman when he reached to the confluence at the time of exile, “O’ son of Sumitra, doest thou behold the beautiful wreath of worshipful fire and I infer some ascetic to be near. For certain we have arrived at the confluence of the Ganga and it is for this that we hear the roar of the waters produced by their rushing together”.

Ancient Period

The foundation of the city is supposed to be in the early Buddhist period when Prayag started to be emerged as a town. Porter believes that the city was founded by Puru, the sixth in descent from Buddha. Keene believes the existence of city in the period of Macedonian Empire. James Tod has mentioned that Prayag was capital of the Prassii of Magasthenese.

The pillar of Ashoka standing in Allahabad Fort is the greatest testimony for Prayag was an important centre about 250 B.C.

Hiuen Tsang visited India about 644 A.D. and described Prayag as a large city between two rivers in about 6.5 Km. circuit. Hiuen Tsang says “To the east of capital between the two confluentes of the river, for the space of 10 li or 50 the ground is pleasant and upland. The whole is covered with the fine sand”.

This description of Prayag by Hiuen Tsang states that the city was probably covering a greater part of the present fort and extending northward to present Daraganj along the Ganga and to the west along the Yamuna. The confluence was further east leaving a larger area of sandy ground between the city and the confluence.

Allahabad During Mughal Period

It is assumed that Allahabad was founded by Akbar when he visited Prayag. According to ‘Akbarnama’, Akbar founded a great city
in the town of Prayag. Akbar built a fort at the confluence of the Ganga and Yamuna. It is not certain that when the fort was built. According to Canningham, the fort of Allahabad was founded on its site in the 21st year of Akbar's reign, i.e. A.D. 1572. Akbarnama states that fort was not built till 2nd Azar 991 i.e. about middle of November, 1583. ‘Tabaquati Akbari’ mentions that in 1584, Akbar commended a city and fort to be built at Prayag. Thus it can be concluded that the fort was founded about 1584. The two embankments along the Ganga known as Baxi Bund and Beni Bund are also to have been built by Akbar with a view for protecting the fort from the devastating floods of the Ganga.

Akbar changed the name of the city from Prayag to Illahabas, meaning of the God. Later on it was called Allahabad by Shah Jahan. Badoni and Nizammuddin state that Akbar laid the foundation of an Imperial city at Prayag which he called Illahabas. The Ain-i-Akbari informs that the ancient name of the city was 'Piyag' and his Majesty gave that the name of Illahabas. The Ganga eroded its western bank to such an extent that only a portion of it was left behind, in the shape of a narrow 'Kankar' ridge that probably looked like an island when the adjoining lowland was inundated during the rains. This area was protected from flood by building two embankments. The higher ground which was selected as the site of the present Daraganj locality said to be founded by Dara Shikoh, son of Shahjahan.

Jahangir during his reign as the Governor of the Suba Illahabas, stayed in the Akbar fort as the city was capital of the Suba. He built the garden of Khusurubagh in the west of the city covering an area of 300 square yards enclosed by a wall built with the surplus of materials from the Allahabad Fort.

After Jahangir other Mughal Kings were not interested in the
development of city and following the death of Aurangzeb in 1707, the Mughals became too weak to assert their authority in distant provinces. Consequently, the Marathas who grew in strength during this period demanded the restoration of Allahabad along with the other sacred cities of Mathura Banaras. But when they failed they subjected the province of Allahabad to incursion and as a result Raghoji Bhonsla, in 1739, defeated the Muslim deputy Governor Shuja Khan and returned with booty.

In 1743, the province of Allahabad was assigned to the Nawab of Awadh who deputed his Diwan Nawal Rai as his governor at Allahabad. Nawal Rai led a military campaign against Farrukhabad and was defeated and killed. Ahmad Khan, the new ruler of Farrukhabad, plundered and burnt the city of Allahabad from Khuldabad to the fort, excepting a few quarters of Pathans of Dariabad. This tragic event reduced the city to an ordinary township.

The state of political unrest in the later part of 18th century witnessed the transfer of authority of Allahabad in different hands. The East India Company emerged triumphant over a number of Indian powers after the Battle of Buxer in 1764. With the effect of treaty of Buxer in 1764, the town and the adjacent territories were transferred from the Nawab of Oudh to the Emperor Shah Alam II of Delhi and the fort was garrisoned by British troops. After the emperor joined the Marathas and granted the city Allahabad to them, the Company become angry and sold it to Sujauddaula, the Wazir of Oudh. Later on, the Nawab of Oudh Saudat Ali Khan ceded Allahabad to the Company on the 14th November 1801 by the treaty of Lucknow.

The Growth of Allahabad City : 1801 to 1851

Allahabad was extended a mile in length from east to west on both sides to G.T. Road in early part of 18th Century and therefore was a small town. According to Heber, Allahabad was a small city.
with narrow irregular streets confined to the bank of the Yamuna in about 1825 A.D. In 1803, the population of Allahabad, excluding garrison, was 20000.

A small civil station grew upon the bank of the Yamuna to the west of fort for the British officers after cession in 1801. Allahabad became an important military station and headquarter of the district by the 30s of the 19th century. The company tried to convert the fort into a Vauban-style fortress. The towers were pruned down and high store ramparts on the land side were topped with turfed parapets and obscured by a green sloping glacis. An outer ditch was added to entrance gate. The Yamuna gate was closed and the fort was converted into an arsenal.

In 1839, a new civil station was built near the present Trinity Church in Colonelganj where a cantonment was also planned. Consequently, a small marketing center known as Katra Bazar grew up in the vicinity of the Civil Station. A Board of Revenue and the chief and criminal courts were established in 1831. In 1834, the city became the headquarters of a separate administration. All these events lead to the development of city but at in slow pace (Fig. 2.12).

Development of Allahabad as a City: (1858 to 1875)

Allahabad city entered in a new phase of development after 1858, when the provincial capital of the North Western Provinces shifted from Agra to Allahabad following the mutiny of 1857. A new township plan was proposed on the basis of extensive survey of the whole area adjacent to the city between two rivers, the Ganga and the Yamuna under supervision of Major Strachey in 1858. The Civil Lines was proposed to be developed between the high bank of the Ganga in the north and the railway line in the south. This township plan has a strategic location as it was to be protected by three cantonments. The Northern and Southern Cantonments were there in the east and the new cantonment was lying in the west.
Strachey completed his layout plan by 1862. Eight villages falling in the area of new township were destructed. At this time the settlement was mainly confined to the higher ground and its eastern boundary closely followed the 88.392m. contour. After the township plan was applied a remarkable development took place. The southern cantonment was abolished by 1875 and its site was used for other purposes. Alfred Park also known as Company Garden used an area of about 133 acre for Public Park. Its north-eastern corner was occupied by the Muir College founded in 1870. The Roman Catholic Cathedral was built in 1871 to the west of Alfred Park. North-Western part of the cantonment was occupied by the Police Line and the south-east part was covered by the Government House and its garden.

The Growth of the City : 1875 to 1947

Allahabad city started growing as an educational and cultural centre in the last quarter of 19th century. The University of Allahabad was founded in 1887. Anglo Bengali College, A.V. College, the Government college, Ewing Christian College, K.P. Pathshala and several other educational centres sprang during this last quarter of 19th century.

Transportation facilities especially railway also improved during the last quarter of 19th century. Allahabad had become one of the important railway stations of Northern India and was situated on the main line. The construction of the Allahabad Faizabad railway line thrusted the real growth of the city. The construction of rail-road Bridge in 1905 played a crucial role. In 1912, a meter guage railway line was constructed to enter the city from the east crossing the Ganga near Daraganj over the Izatt Bridge.

The development of transportation facilities, educational centres and other civil amenities led to the natural growth of the city. Consequently population of the city increased rapidly and resulted congestion. The service class and professionals demanded better
housing facilities. The pressure from Indian officials, lawyers and university teachers led to the establishment of the residential colonies of Luckerganj and George Town in the year 1906 and 1909 respectively. Chowk area also developed in the first quarter of twentieth century.

Allahabad kept on growing rapidly as an administrative as well as educational centre. This development presented a need of such a body that could monitor its growth properly. Therefore, the Allahabad Improvement Trust was constituted in 1919 to develop civil amenities. The Allahabad Improvement Trust was basically concerned with the development of three areas as follows:

(i) To widen the roads in the congested parts of the city,
(ii) To develop parks and open spaces,
(iii) To provide housing facilities and relieving the congestion in the city.

The Mir Khan -Ki-Sarai lane was widened and Zero Road was extended to Sheo Charan Lal Road by the Allahabad Improvement Trust. Several parks were opened in the congested areas like Mirganj. Several housing schemes were also completed by the Trust. Sultanpur Bhava Housing scheme, Minhajpur Housing Scheme, Mumfordganj Housing scheme, Refugee quarters in Atala, Rama Bagh Housing Scheme, Industrial Colony in the south, Bairana Housing scheme and Alopibagh schemes and Tagore Town are some of the credible achievements of the trust (Fig. 2.12).

Thus evolution of Allahabad city has been gradual in nature. Important parts of Allahabad developed in twentieth century. Allahabad continued to be capital city until 1930 after which capital was transferred to Lucknow. This development affected the growth of city adversely. But many of the important offices like High Court, Railway Service Commission, Secondary Education Council, Public
Fig. 2.12: Historical Development Allahabad City
Service Commission remained in Allahabad and made Allahabad as an important administrative centre.

Growth of Allahabad City after 1947

Indian was declared independent on August 15, 1947 and the era after it witnessed the modern development of the city. Many of the schemes were launched to develop housing facilities. The Stanly road Housing Scheme was proposed in 1962. The building of shops in the Khusru Bagh was completed. The Muthiganj motor bus stand scheme and the Slum Clearance Schemes of Muthiganj have also been approved by the development committee. The fringe area of Allahabad developed in Linear Pattern along G.T. Road. The Nagar Mahapalika was established on February 1, 1960, under the U.P. Nagar Mahapalika Adhiniyam, 1959, and on its coming into existence the improvement trust ceased to function and is now known as the Vikas Vibhag of the Mahapalika. The limit of city was extended and industries were established. The development of housing facilities, industries and transport lead to the growth of the fringe (Fig. 2.12).

10. Ibid.
12. Based on *Climatological Table for Allahabad*. op. cit.
15. *Climatological Table for Allahabad*. op. cit.

(86)

Steel, C.D.: *op. cit.*

Ibid, p. 52.

Ibid, p. 252.