CONTENTS

<table>
<thead>
<tr>
<th>Content</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xi</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xiii</td>
</tr>
<tr>
<td>Chapter 1: Introduction</td>
<td></td>
</tr>
<tr>
<td>1.1: Introduction</td>
<td>2</td>
</tr>
<tr>
<td>1.2: Study area</td>
<td>4</td>
</tr>
<tr>
<td>1.3: Geology of Gulbarga watershed</td>
<td>6</td>
</tr>
<tr>
<td>1.4: Objectives</td>
<td>7</td>
</tr>
<tr>
<td>1.5: Thesis outline</td>
<td>8</td>
</tr>
<tr>
<td>1.5.1: Chapter 1</td>
<td>8</td>
</tr>
<tr>
<td>1.5.2: Chapter 2</td>
<td>8</td>
</tr>
<tr>
<td>1.5.3: Chapter 3</td>
<td>9</td>
</tr>
<tr>
<td>1.5.4: Chapter 4</td>
<td>9</td>
</tr>
<tr>
<td>1.5.5: Chapter 5</td>
<td>9</td>
</tr>
<tr>
<td>1.5.6: Chapter 6</td>
<td>9</td>
</tr>
<tr>
<td>1.5.7: Chapter 7</td>
<td>9</td>
</tr>
<tr>
<td>Chapter 2: Review of Literature</td>
<td></td>
</tr>
<tr>
<td>2.1: Introduction</td>
<td>10</td>
</tr>
<tr>
<td>2.2: Groundwater fluctuation and Flow pattern analysis</td>
<td>10</td>
</tr>
<tr>
<td>2.3: 3D Subsurface modeling</td>
<td>13</td>
</tr>
<tr>
<td>2.4: Groundwater prospect zone characterisation</td>
<td>14</td>
</tr>
<tr>
<td>2.5: Land Use Land Cover analysis</td>
<td>16</td>
</tr>
<tr>
<td>2.6: Surface water analysis</td>
<td>16</td>
</tr>
<tr>
<td>2.7 Water quality analysis</td>
<td>17</td>
</tr>
<tr>
<td>2.8 Groundwater modeling</td>
<td>19</td>
</tr>
<tr>
<td>Chapter 3: Water table analysis</td>
<td></td>
</tr>
<tr>
<td>3.1: Introduction</td>
<td>22</td>
</tr>
</tbody>
</table>
3.2: Decadal water level trends (2001-2011)
 3.2.1: Data used
 3.2.1.1 Water table
 3.2.1.2 Rainfall
 3.2.2: Methodology followed
 3.2.3: Result and discussions

3.3: Monthly water level analysis (2015-2016)
 3.3.2: Data used
 3.3.2.1 Field information
 3.3.3: Methodology followed
 3.3.4: Result and Discussions
 3.3.4.1: Water table maps
 3.3.4.2: Water Table fluctuation map

3.4: Analysis of influence of geological and geographical factors on water table fluctuation
 3.4.1: Methodology
 3.4.2: Result and Discussions
 3.4.2.1: Correlation of water table with Rainfall
 3.4.2.2: Correlation of water table with temperature
 3.4.2.3: Correlation of water table with Lithology
 3.4.2.4: Correlation of water table with Soil assemblage
 3.4.2.5: Correlation of water table with Elevation of the terrain
 3.4.2.6: Correlation of water table with Geomorphology
 3.4.2.7: Correlation of water table with Slope characteristics
 3.4.2.8: Correlation of water table with nearest stream order

3.8: Conclusion:

Chapter 4: 3D imaging of subsurface layers by using resistivity techniques upto a depth of about 100 meters

4.1: Introduction
4.2: 3D Subsurface Imaging and Modeling
Chapter 5: Morphometry and hydrological processes

5.1: Introduction 67
5.2: Prioritizing Subwatersheds into Groundwater Prospect zones 67

5.2.1: Materials 67
5.2.2: Methodology 68
5.2.3: Result and Discussions 70

5.2.3.1: Drainage density 73
5.2.3.2: Drainage frequency 74
5.2.3.3: Drainage texture 75
5.2.3.4: Elongation ratio 76
5.2.3.5: Form factor 77
5.2.3.6: Constant of channel maintenance 78

5.3: Land use land cover analysis 82

5.3.1: Materials 83
Chapter 6: Groundwater resource management strategy

6.1: Introduction 90
6.2: Drinking water safety scenario analysis 90
 6.2.1: Materials 91
 6.2.1.1: Field information 91
 6.2.1.2: Software 91
 6.2.2: Methodology 92
 6.2.3: Results and Discussion 92
 6.2.3.1: Ph 97
 6.2.3.2: Electric conductivity 99
 6.2.3.3: Total dissolved solids 101
 6.2.3.4: Total hardness 103
 6.2.3.5: Alkalinity 105
 6.2.3.6: Chloride 107
 6.2.3.7: Nitrate 109
 6.2.3.8: Fluoride 111
 6.2.3.9: Iron 113
6.3: Solute transport modeling 114
 6.3.1: Model inputs 115
 6.3.1.1: Aquifer properties 115
6.3.1.2: Surface waterbody 115
6.3.1.3: Groundwater exploration units 115
6.3.2: Modeling software 115
6.3.3: Methodology 116
6.3.4: Results and discussion 119
6.3.5: Conclusion 122

Chapter 7: Conclusion 124
Chapter 8: References 129