CONTENTS

Part - I 1

1. INTRODUCTION ... 2
 1.1 Brief outline of sugar industry 2
 1.2 Composition of sugar cane 3
 1.3 Composition of cane juice 4
 1.4 Method of sugar manufacture 14
 1.5 Color problem in sugar industry 17
 1.6 Objective of work ... 20

2. REVIEW OF LITERATURE .. 22
 2.1 The coloured substances formed by sugar degradation product 22
 2.2 Colour status in different stages in juice processing 27

3. EXPERIMENTAL ... 29
 3.1 Materials and equipments 29
 3.2 Characterization of cane juice spectrophotometrically 30
 3.3 Isolation of colorant from clarified cane juice employing active carbon .. 32
 3.4 Isolation of colorant from deteriorated sugar by employing active carbon .. 34
 3.5 Characterization of colorant isolated from clarified cane juice employing active carbon .. 34
 3.6 Comparative spectra of colorant isolated from clarified cane juice and deteriorated sugar ... 36

4. RESULTS ... 37
 4.1 Characterization of cane juice spectrophotometrically 37
4.2 Clarified cane juice .. 38
4.3 Effect of pH on absorbance (420nm) of cane juice 39
4.4 Effect of SO₂ on absorbance, specific conductivity and pH of
limed cane juice .. 40
4.5 Absorption and IR spectra of the colorant (humic acid) isolated
from clarified cane juice employing active carbon 43
4.6 Absorbance of colorant at different pH 45
4.7 Hygroscopic nature of the colorant 47
4.8 Absorption spectra and IR spectra of colorant isolated from
deteriorated sugar .. 47

5. DISCUSSION ... 49
5.1 Distribution of colorants in cane juice 49
5.2 Characterization of colorant isolated from clarified cane juice
deteriorated sugar and stored sugar sample 51
5.3 Physico-chemical properties of humic acid isolated from clarified
cane juice ... 55
5.4 Formation of humic acid during processing of cane juice 59
5.5 Effect of humic acid on sulphitation reaction 63

6. REFERENCES .. 68

PART-2 .. 74
1. INTRODUCTION .. 75
2. OBJECTIVE OF WORK .. 77
3. EXPERIMENTAL ... 78
 3.1 Materials and equipments ... 78
 3.2 Adsorption of caramel and humic acid during crystallization... 79
4. EXPERIMENTAL .. 83
 4.2 Plot of Beer's curve .. 83

xv
RESULTS AND DISCUSSIONS

1. Adsorption of humic acid of different origins, on sugar crystals .. 89
2. Effect of pH on adsorption of colouring matter in cane sugar crystals .. 91
3. Adsorption of humic acid on monovalent and bivalent salts .. 95

REFERENCES

165

NEW TECHNIQUES FOR REMOVAL AND IDENTIFICATION OF HUMIC ACID

<table>
<thead>
<tr>
<th>Part</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>167</td>
</tr>
<tr>
<td>1.1</td>
<td>Colour development in sugar humic acid</td>
<td>169</td>
</tr>
<tr>
<td>2</td>
<td>EXPERIMENTAL</td>
<td>171</td>
</tr>
<tr>
<td>2.1</td>
<td>Materials and methods</td>
<td>171</td>
</tr>
<tr>
<td>2.2</td>
<td>Isolation of colorant</td>
<td>171</td>
</tr>
<tr>
<td>2.3</td>
<td>Molecular weight of the colorant solution determined by osmotic pressure</td>
<td>173</td>
</tr>
<tr>
<td>3</td>
<td>RESULTS AND DISCUSSIONS</td>
<td>178</td>
</tr>
<tr>
<td>3.1</td>
<td>Conclusion</td>
<td>183</td>
</tr>
<tr>
<td>4</td>
<td>REFERENCES</td>
<td>186</td>
</tr>
</tbody>
</table>

xvi