LIST OF SYMBOLS

c = Non-dimensional concentration (Chapter VI)
 = Concentration (Chapter VIII)

\(c_0, c_d\) = Constant concentration.

\(c'\) = Concentration (Chapter VI)
 = Non-dimensional concentration (Chapter VIII)

\(\tilde{c}'\) = Laplace transform of \(c'\).

\(D, d_1, d_2, d_3\) = Non-dimensional quantities.

d = Length of unobstructed tube (Chapter V)

\(D'\) = Diffusion coefficient (Chapter VI)

Dm = Diffusion coefficient (Chapter VIII)

\(\delta\) = Rate of shear

H = Thickness of porous pad.

h = \(\frac{1}{2}\) Film thickness (Chapter VI)
 = Film thickness (Chapter VII)

\(2h_0\) = Minimum film thickness (Chapter VI)

\(J_0, J_1\) = Bessel functions.

K = Additional viscosity coefficient for micropolar fluid.

k = Permeability of porous material.

\(K_1, K_2, K_3\) = Non-dimensional quantities.

2L = Length of rectangular plate.

\(L_0\) = Length of stenotic region (Chapter V)

m = Parameter.

n = Power-law index

P = Wall permeability (Chapter VIII)
\[p = \text{Pressure (Chapter II, III, V, VII, VIII)} \]
\[p' = \text{Pressure (Chapter VI)} \]
\[\bar{p}' = \text{Pressure in porous matrix (Chapter VI).} \]
\[\bar{p} = \text{Non-dimensional pressure in porous matrix (Chapter VI)} \]
\[\text{Pressure in porous matrix (Chapter VII).} \]
\[\text{Pressure (Chapter IV).} \]
\[p_0 = \text{Zeroeth order pressure distribution in fluid film region.} \]
\[p_1 = \text{First order pressure distribution in fluid film region.} \]
\[\bar{p}_0 = \text{Non-dimensional Zeroeth order pressure distribution.} \]
\[\bar{p}_1 = \text{Non-dimensional first order pressure distribution.} \]
\[Q = \text{Flux across a section.} \]
\[\bar{Q}, \bar{Q}_1, \bar{Q}_2 = \text{Non-dimensional flux (Chapter V)} \]
\[R = \text{Radius of tube (Chapter II, III, VIII)} \]
\[\text{Radius of constricted tube (Chapter V)} \]
\[\text{Non-dimensional radius of constricted tube (Chapter IV)} \]
\[R_0 = \text{Radius of unobstructed tube (Chapter IV, V).} \]
\[\bar{R} = \text{Non-dimensional radius of constricted tube (Chapter V).} \]
\[\text{Radius of constricted tube (Chapter IV)} \]
\[r, x = \text{Cylindrical polar coordinate system (Chapter II, III, V, VIII).} \]
\[\text{Non-dimensional cylindrical polar coordinate system (Chapter IV).} \]
\(\bar{r}, \bar{x} \quad = \quad \text{Cylindrical polar coordinate system (Chapter IV).} \\
\bar{r}', \bar{x}' \quad = \quad \text{Non-dimensional cylindrical polar coordinate (Chapter VIII).} \\
\bar{r}_1, \bar{r}_2 \quad = \quad \text{Radial distances} \\
\bar{r}_1, \bar{r}_2 \quad = \quad \text{Non-dimensional radial distance.} \\
T \quad = \quad \text{Time constant (Chapter IV, VII).} \\
T_0 \quad = \quad \text{Initial time (Chapter VI).} \\
t \quad = \quad \text{Non-dimensional time variable (Chapter IV).} \\
= \quad \text{Time of approach (Chapter VI).} \\
\bar{t} \quad = \quad \text{Time variable (Chapter IV).} \\
U \quad = \quad \text{Non-dimensional central line velocity (Chapter IV)} \\
= \quad \text{Velocity in axial direction without drag reducing polymer (Chapter V).} \\
\bar{U} \quad = \quad \text{Ratio of velocities (Chapter V).} \\
= \quad \text{Central line velocity (Chapter IV).} \\
U_0 \quad = \quad \text{Initial velocity.} \\
\bar{U}_0 \quad = \quad \text{Average velocity in unobstructed tube.} \\
u_1, u_2, u_3 \quad = \quad \text{Velocity in axial direction.} \\
\bar{u}_1, \bar{u}_2, \bar{u}_3 \quad = \quad \text{Non-dimensional velocities in axial direction.} \\
\bar{u}, \bar{v} \quad = \quad \text{Velocity components (Chapter IV).} \\
= \quad \text{Non-dimensional velocity components in porous matrix (VI).} \\
= \quad \text{Velocity components in porous matrix (Chapter VII).} \\
u \quad = \quad \text{Velocity in axial direction with drag reducing polymers (Chapter V).} \\
= \quad \text{Velocity in axial direction (Chapter VIII).} \\
u, v \quad = \quad \text{Non-dimensional velocity component (Chapter IV, VI).} \\
= \quad \text{Velocity components in fluid film region (Chapter VII).}
\(\bar{u}, \bar{v} \) = Non-dimensional velocity components in porous matrix (Chapter VI).

\(\bar{u}', \bar{v}' \) = Velocity components in porous matrix (Chapter VI).

\(\bar{w} \) = Non-dimensional load capacity (Chapter VI).

\(\bar{w}_0 \) = Zeroth order non-dimensional load capacity.

\(\bar{w}_1 \) = First order non-dimensional load capacity.

\(2x_0 \) = Non-dimensional stenosis length (Chapter IV).

\(x, y \) = Non-dimensional Cartesian coordinate system (Chapter VI).

\(x', y' \) = Cartesian coordinate system (Chapter VII).

\(\alpha \) = Non-dimensional quantity (Chapter III).

\(\alpha_0 \) = Constant

\(2\beta \) = Non-dimensional film thickness (Chapter VI).

\(\gamma \) = New viscosity coefficient for micropolar fluid

\(\delta, \delta_2 \) = Thickness of plasma layer (Chapter II, III).

\(\delta_1 \) = Radius of central region (Chapter III)

\(\delta_h/R_0 \) = Non-dimensional stenosis thickness.

\(\lambda \) = Constant of proportionably (Chapter VI).

\(\lambda_1, \lambda_2, \eta_0 \) = Additional viscosity coefficients.

\(\eta \) = Apparent viscosity (Chapter II).

\(\eta_p \) = Viscosity of peripheral layer (Chapter II).

\(\eta_c \) = Viscosity in axial core (Chapter II).
\(u, \mu_0 \) = Classical viscosity coefficient.
\(u_1, u_2, u_3 \) = Viscosity coefficients (Chapter II).
\(\mu_a \) = Apparent blood viscosity (Chapter III).
\(\rho \) = Non-dimensional mass density.
\(\bar{\rho} \) = Mass density.
\(\phi \) = Design parameter (Chapter VI).
\(\Omega \) = Microrotation velocity vector.
\(\varepsilon \) = Viscoelastic parameter.
\(\tau \) = Shear stress.
\(\tau_0 \) = Yield stress.
\(\tau_w \) = Non-dimensional wall shear stress (Chapter IV).
\(\bar{\tau}_w \) = Wall shearing stress (Chapter IV).
\(\tilde{\tau}_w \) = Ratio of shear stresses at the wall (Chapter V).