CHAPTER 8
AN APPLICATION OF FRACTIONAL CALCULUS TO HARMONIC UNIVALENT FUNCTIONS

8.1 A continuous complex-valued function \(f = u + iv \) defined in a simply connected domain \(D \) is said to be harmonic in \(D \) if both \(u \) and \(v \) are real harmonic in \(D \). In any simply connected domain we can write \(f = h + \bar{g} \), where \(h \) and \(g \) are analytic in \(D \). We call \(h \) the analytic part and \(g \) the co-analytic part of \(f \). A necessary and sufficient condition for \(f \) to be locally univalent and sense-preserving in \(D \) is that

\[|h'(z)| > |g'(z)|, \quad z \in D. \]

See Clunie and Sheil-Small [16].

Denote by \(S_h \) the class of functions \(f = h + \bar{g} \) that are harmonic univalent and sense-preserving in the open unit disk \(U = \{ z : |z| < 1 \} \) for which \(f(0) = f'(0) - 1 = 0 \). Then for \(f = h + \bar{g} \in S_h \), we may express the analytic functions \(h \) and \(g \) as

\[

g(z) = \sum_{k=1}^{\infty} b_k z^k, \quad |b_k| < 1. \tag{8.1.1}
\]

Recently, Jahangiri [46] defined the class \(S_h^*(\alpha) \) consisting of functions \(f \) of the form (8.1.1) satisfying the condition

\[
\Re \left(\frac{zh'(z) - zg'(z)}{h(z) + g(z)} \right) \geq \alpha, \quad (0 \leq \alpha < 1). \tag{8.1.2}
\]

The case when \(\alpha = 0 \) is given in [104] and for \(\alpha = b_1 = 0 \), see [101].

The class \(S_h \) reduces to class \(S \) of normalized analytic univalent functions if co-analytic part of \(f \) i.e. \(g = 0 \), for this class \(f(z) \) may be expressed as

\[
f(z) = z + \sum_{k=2}^{\infty} a_k z^k. \tag{8.1.3}
\]

Several authors, such as ([15], [20], [67], [68], [70], [75], [106], [107], [110]) studied the subclasses of analytic univalent functions by using fractional calculus operator. In this
Chapter 8

Chapter 8 has been made to study the subclass of harmonic univalent functions by using fractional calculus.

8.2 Fractional Operator

The following definitions of fractional derivatives and fractional integrals are due to Owa [70] and Srivastava and Owa [110].

Definition 8.2.1. The fractional integral of order λ is defined for a function $f(z)$ by

$$D_{z}^{-\lambda}f(z) = \frac{1}{\Gamma(\lambda)} \int_{0}^{z} \frac{f(\zeta)}{(z-\zeta)^{1-\lambda}} d\zeta,$$

(8.2.1)

where $\lambda > 0$, $f(z)$ is an analytic function in a simply connected region of the z-plane containing the origin and the multiplicity of $(z-\zeta)^{-\lambda}$ is removed by requiring $\log(z-\zeta)$ to be real when $(z-\zeta) > 0$.

Definition 8.2.2. The fractional derivative of order λ is defined for a function $f(z)$ by

$$D_{z}^{\lambda}f(z) = \frac{\Gamma(n+\lambda)}{\Gamma(n)z^{n+\lambda}} \int_{0}^{z} \frac{f(\zeta)}{(z-\zeta)^{1+\lambda}} d\zeta,$$

(8.2.2)

where $0 < \lambda < 1$, $f(z)$ is an analytic function in a simply connected region of the z-plane containing the origin and the multiplicity of $(z-\zeta)^{-\lambda}$ is removed as in Definition 8.2.1 above.

Definition 8.2.3. Under the hypothesis of Definition 8.2.2 the fractional derivative of order $n + \lambda$ is defined for a function $f(z)$ by

$$D_{z}^{n+\lambda}f(z) = \frac{d^{n}}{dz^{n}} D_{z}^{\lambda}f(z),$$

(8.2.3)

where $0 < \lambda < 1$ and $n \in N_{0} = \{0,1,2,\ldots\}$.

Using the Definition 8.2.1 and its known extension involving fractional derivatives, Owa and Srivastava [75] introduced the operator $\Omega^{\lambda} : A \rightarrow A$ defined by

$$\Omega^{\lambda}f(z) = \Gamma(2-\lambda)z^{-1} D_{z}^{\lambda}f(z), \quad (\lambda \neq 2,3,4,\ldots).$$

(8.2.4)

where A is the class of functions of the form (8.1.3) which are analytic in U.

Let $S_{H,\lambda}(\alpha)$ denote the subclass of S_{H} consisting of functions f of the form (8.1.1) satisfying the following condition
where $0 \leq \alpha < 1, 0 \leq \lambda < 1$.

Further, let the subclass $T S_{s, \lambda}^* (\alpha)$ consist of harmonic functions $f = h + g$ in $S_{s, \lambda} (\alpha)$, so that h and g are of the form

$$h(z) = z - \sum_{k=1}^{\infty} |a_k| z^k, \quad g(z) = \sum_{k=1}^{\infty} |b_k| z^k.$$ \hfill (8.2.6)

We note that for $\lambda = 0$ the class $S_{s, \lambda}^* (\alpha)$ reduces to the class $S_{s}^* (\alpha)$ studied by Jahangiri [46].

8.3 Main Results

We begin with a sufficient coefficient condition for functions in $S_{s, \lambda}^* (\alpha)$.

Theorem 8.3.1. Let $f = h + g$ be such that h and g are given by (8.1.1). Furthermore, let

$$\sum_{k=1}^{\infty} \left(\frac{k - \alpha}{1 - \alpha} |a_k| + \frac{k + \alpha}{1 - \alpha} |b_k| \right) \varphi(k, \lambda) \leq 2,$$ \hfill (8.3.1)

where $a_i = 1, 0 \leq \alpha < 1, 0 \leq \lambda < 1$ and $\varphi(k, \lambda) = \frac{\Gamma(k+1)\Gamma(2-\lambda)}{\Gamma(k+1-\lambda)}$. Then f is sense-preserving, harmonic univalent in U and $f \in S_{s, \lambda}^* (\alpha)$.

Proof. First we note that f is locally univalent and sense-preserving in U. This is because

$$|h'(z)| \geq 1 - \sum_{k=2}^{\infty} k |a_k| z^{k-1}$$

$$> 1 - \sum_{k=2}^{\infty} k |a_k|$$

$$\geq 1 - \sum_{k=2}^{\infty} \frac{k - \alpha}{1 - \alpha} \varphi(k, \lambda) |a_k|$$

$$\geq \sum_{k=1}^{\infty} \frac{k + \alpha}{1 - \alpha} \varphi(k, \lambda) |b_k|$$

$$\geq \sum_{k=1}^{\infty} k |b_k|$$
\[
> \sum_{k=1}^{\infty} k |b_k| r^{k-1} \\
\geq |g'(z)|.
\]

To show that \(f \) is univalent in \(U \), suppose \(z_1, z_2 \in U \) such that \(z_1 \neq z_2 \), then
\[
\left| \frac{f(z_1) - f(z_2)}{h(z_1) - h(z_2)} \right| \geq 1 - \frac{\sum_{k=1}^{\infty} b_k (z_1^k - z_2^k)}{|z_1 - z_2 + \sum_{k=2}^{\infty} a_k (z_1^k - z_2^k)|}
\]
\[
= 1 - \frac{\sum_{k=1}^{\infty} k |b_k|}{1 - \sum_{k=2}^{\infty} k |a_k|}
\]
\[
\geq 1 - \frac{\sum_{k=1}^{\infty} k + \alpha \varphi(k, \lambda) |b_k|}{1 - \sum_{k=2}^{\infty} k - \alpha \varphi(k, \lambda) |a_k|}
\]
\[
\geq 0.
\]

Now, we show that \(f \in S^*_{H, \alpha}(\alpha) \). Using the fact that \(\Re \omega \geq \alpha \), if and only if
\[
|1 - \alpha + \omega| \geq |1 + \alpha - \omega|,
\]
it suffices to show that
\[
|A(z) + (1 - \alpha) B(z)| - |A(z) - (1 + \alpha) B(z)| \geq 0,
\]
(8.3.2)
where \(A(z) = z \left(\Omega^4 h(z) \right)' - z \left(\Omega^4 g(z) \right)' \) and \(B(z) = \Omega^4 h(z) + \Omega^4 g(z) \).

Substituting for \(A(z) \) and \(B(z) \) in L.H.S. of (8.3.2) and making use of (8.3.1), we obtain
\[
\left| \frac{z (\Omega^4 h(z))' - z (\Omega^4 g(z))'}{(\Omega^4 h(z) + \Omega^4 g(z))} \right| + (1 - \alpha) (\Omega^4 h(z) + \Omega^4 g(z)) \]
Chapter 8

\[-\left[z(\Omega^h(z))' - z(\Omega^g(z))' \right] - (1+\alpha)(\Omega^h(z) + \Omega^g(z)) \]

\[= (2-\alpha)z + \sum_{k=2}^{\infty} (k+1-\alpha) \varphi(k,\lambda) a_k z^k - \sum_{k=1}^{\infty} (k-1+\alpha) \varphi(k,\lambda) b_k z^k \]

\[\geq (2-\alpha)|z| - \sum_{k=2}^{\infty} (k+1-\alpha) \varphi(k,\lambda) |a_k| |z|^k - \sum_{k=1}^{\infty} (k+1+\alpha) \varphi(k,\lambda) |b_k| |z|^k \]

\[= 2(1-\alpha)|z| \left\{ 1 - \sum_{k=2}^{\infty} \frac{k-\alpha}{1-\alpha} \varphi(k,\lambda) |a_k| |z|^{k-1} - \sum_{k=1}^{\infty} \frac{k+\alpha}{1-\alpha} \varphi(k,\lambda) |b_k| |z|^{k-1} \right\} \]

\[= 2(1-\alpha)|z| \left\{ 1 - \left(\sum_{k=2}^{\infty} \frac{k-\alpha}{1-\alpha} \varphi(k,\lambda) |a_k| + \sum_{k=1}^{\infty} \frac{k+\alpha}{1-\alpha} \varphi(k,\lambda) |b_k| \right) \right\} \]

\[\geq 0. \quad \text{(Using (8.3.1))} \]

The Coefficient bound (8.3.1) is sharp for the function

\[f(z) = z + \sum_{k=2}^{\infty} \frac{1-\alpha}{(k-\alpha) \varphi(k,\lambda)} x_k z^k + \sum_{k=1}^{\infty} \frac{1-\alpha}{(k+\alpha) \varphi(k,\lambda)} y_k z^k. \]

(8.3.3)

where \(\sum_{k=2}^{\infty} |x_k| + \sum_{k=1}^{\infty} |y_k| = 1. \)

This completes the proof of the theorem.

If we put \(\lambda = 0 \) in above theorem, we obtain the following result given by Jahangiri [46].

Corollary 8.3.1. Let the function \(f = h + \overline{g} \) be so that \(h \) and \(g \) are given by (8.1.1). Furthermore, let

\[\sum_{k=1}^{\infty} \left(\frac{k-\alpha}{1-\alpha} |a_k| + \frac{k+\alpha}{1-\alpha} |b_k| \right) \leq 2, \]

(8.3.4)

where \(a_k = 1, \ 0 \leq \alpha < 1. \) Then \(f \) is sense-preserving, harmonic univalent in \(U \) and \(f \in S^*_u(\alpha) \).
Chapter 8

In the following theorem, it is proved that the condition (8.3.1) is also necessary for functions \(f = h + \tilde{g} \), where \(h \) and \(g \) are of the form (8.2.6).

Theorem 8.3.2. Let the functions \(f = h + \tilde{g} \) be so that \(h \) and \(g \) are given by (8.2.6). Then \(f \in TS_{H,A}^*(\alpha) \), if and only if

\[
\sum_{k=1}^{\infty} \left((k-\alpha) \varphi(k,\lambda) |a_k| + (k+\alpha) \varphi(k,\lambda) |b_k| \right) \leq 2(1-\alpha),
\]

(8.3.5)

where \(a_i = 1, 0 \leq \alpha < 1, 0 \leq \lambda < 1 \) and \(\varphi(k,\lambda) = \frac{\Gamma(k+1)\Gamma(2-\lambda)}{\Gamma(k+1-\lambda)} \).

Proof. Since \(TS_{H,A}^*(\alpha) \subset S_{H,A}^*(\alpha) \), we only need to prove the "only if" part of the theorem. To this end, for functions \(f \) of the form (8.1.2) we notice that condition

\[
\text{Re} \left\{ \frac{z \left(\Omega^2 h(z) \right)' - z \left(\Omega^2 g(z) \right)'}{\Omega^2 h(z) + \Omega^2 g(z)} \right\} \geq \alpha
\]

is equivalent to

\[
\text{Re} \left\{ \frac{(1-\alpha) z - \sum_{k=2}^{\infty} (k-\alpha) \varphi(k,\lambda) |a_k| z^k - \sum_{k=1}^{\infty} (k+\alpha) \varphi(k,\lambda) |b_k| z^k}{z - \sum_{k=2}^{\infty} |a_k| \varphi(k,\lambda) z^k + \sum_{k=1}^{\infty} |b_k| \varphi(k,\lambda) z^k} \right\} \geq 0.
\]

The above condition must hold for all values of \(z, |z| = r < 1 \). Upon choosing the values of \(z \) on the positive real axis where \(0 \leq z = r < 1 \), we must have

\[
(1-\alpha) - \sum_{k=2}^{\infty} (k-\alpha) \varphi(k,\lambda) |a_k| r^{k-1} - \sum_{k=1}^{\infty} (k+\alpha) \varphi(k,\lambda) |b_k| r^{k-1}
\]

\[
1 - \sum_{k=2}^{\infty} |a_k| \varphi(k,\lambda) r^{k-1} + \sum_{k=1}^{\infty} |b_k| \varphi(k,\lambda) r^{k-1}
\]

\[
\geq 0.
\]

If the condition (8.3.5) does not hold then the numerator in (8.3.6) is negative for \(r \) sufficiently close to 1. Thus there exist a \(z_0 = r_0 \) in \((0,1)\) for which the quotient in (8.3.6) is negative. This contradicts the required condition for \(f \in S_{H,A}^*(\alpha) \) and so the proof is complete. □
Next, we determine the extreme points of closed convex hulls of $TS_{H,x}'(\alpha)$ denoted by $\text{clco } TS_{H,x}'(\alpha)$.

Theorem 8.3.3. If $f \in \text{clco } TS_{H,x}'(\alpha)$, if and only if

\[
f(z) = \sum_{k=1}^{\infty} \left(x_k h_k(z) + y_k g_k(z) \right),
\]

where $h_k(z) = z$, $h_k(z) = z - \frac{1-\alpha}{(k-\alpha) \varphi(k, \lambda)} z^k$, $(k = 2, 3, 4, \ldots)$,

\[
g_k(z) = z + \frac{1-\alpha}{(k+\alpha) \varphi(k, \lambda)} z^k, \quad (k = 1, 2, 3, \ldots), \quad x_k \geq 0, \quad y_k \geq 0, \quad \sum_{k=1}^{\infty} (x_k + y_k) = 1.
\]

In particular, the extreme points of $TS_{H,x}'(\alpha)$ are $\{h_k\}$ and $\{g_k\}$.

Proof. For functions f of the form (8.3.7), we have

\[
f(z) = \sum_{k=1}^{\infty} (x_k h_k(z) + y_k g_k(z))
\]

\[
= \sum_{k=1}^{\infty} (x_k + y_k) z - \sum_{k=2}^{\infty} \frac{1-\alpha}{(k-\alpha) \varphi(k, \lambda)} x_k z^k + \sum_{k=1}^{\infty} \frac{1-\alpha}{(k+\alpha) \varphi(k, \lambda)} y_k z^k.
\]

Then

\[
\sum_{k=2}^{\infty} \frac{k \alpha}{1-\alpha} \varphi(k, \lambda) \left(- \frac{1-\alpha}{(k-\alpha) \varphi(k, \lambda)} x_k \right) + \sum_{k=1}^{\infty} \frac{k \alpha}{1-\alpha} \varphi(k, \lambda) \left(\frac{1-\alpha}{(k+\alpha) \varphi(k, \lambda)} y_k \right)
\]

\[
= \sum_{k=2}^{\infty} x_k + \sum_{k=1}^{\infty} y_k = 1 - x_1 \leq 1,
\]

and so $f \in TS_{H,x}'(\alpha)$.

Conversely, suppose that $f \in \text{clco } TS_{H,x}'(\alpha)$ then set $x_k = \frac{k \alpha}{1-\alpha} \varphi(k, \lambda) a_k$, $(k = 2, 3, 4, \ldots)$ and $y_k = \frac{k \alpha}{1-\alpha} \varphi(k, \lambda) b_k$, $(k = 1, 2, 3, \ldots)$. Note that by Theorem 8.3.2, $0 \leq x_k \leq 1$, $(k = 2, 3, 4, \ldots)$ and $0 \leq y_k \leq 1$, $(k = 1, 2, 3, \ldots)$. We define $x_1 = 1 - \sum_{k=2}^{\infty} x_k - \sum_{k=1}^{\infty} y_k$ and note that by Theorem 8.3.2, $x_i \geq 0$. Consequently, we obtain $f(z) = \sum_{k=1}^{\infty} (x_k h_k(z) + y_k g_k(z))$ as required. \square
Chapter 8

The following theorem gives the bounds for functions in $TS_{H, \lambda}^*(\alpha)$, which yields a covering result for this class.

Theorem 8.3.4. Let $f \in TS_{H, \lambda}^*(\alpha)$, then

$$|f(z)| \leq (1 + |b_1|)r + \left(\frac{1-\alpha}{2-\alpha} - \frac{1+\alpha}{2-\alpha}|b_1|\right) \frac{2-\lambda}{2} r^2, \quad |z| = r < 1$$

and

$$|f(z)| \geq (1 - |b_1|)r - \left(\frac{1-\alpha}{2-\alpha} - \frac{1+\alpha}{2-\alpha}|b_1|\right) \frac{2-\lambda}{2} r^2, \quad |z| = r < 1.$$

Proof. We only prove the right hand inequality. The proof for the left hand inequality is similar and will be omitted. Let $f \in TS_{H, \lambda}^*(\alpha)$. Taking the absolute value of f, we obtain

$$|f(z)| \leq (1 + |b_1|)r + \sum_{k=2}^\infty (|a_k| + |b_k|)r^k$$

$$\leq (1 + |b_1|)r + \sum_{k=2}^\infty (|a_k| + |b_k|)r^2$$

$$= (1 + |b_1|)r + \frac{1-\alpha}{2-\alpha}\varphi(2, \lambda) \sum_{k=2}^\infty \frac{2-\alpha}{1-\alpha} \frac{2+\alpha}{1-\alpha} |a_k| + |b_k|)r^2$$

$$\leq (1 + |b_1|)r + \frac{(1-\alpha)}{2(2-\alpha)} \sum_{k=2}^\infty \frac{k-\alpha}{1-\alpha} |a_k| + \frac{k+\alpha}{1-\alpha} |b_k|) \varphi(k, \lambda)r^2$$

$$\leq (1 + |b_1|)r + \frac{(1-\alpha)}{2(2-\alpha)} \left(1 - \frac{1+\alpha}{1-\alpha} |b_1|\right) r^2$$

$$= (1 + |b_1|)r + \left(\frac{1-\alpha}{2-\alpha} - \frac{1+\alpha}{2-\alpha}|b_1|\right) \frac{2-\lambda}{2} r^2. \quad \square$$

The following covering result follows from the left hand inequality in Theorem 8.3.4.

Corollary 8.3.2. Let f of the form (8.2.6) be so that $f \in TS_{H, \lambda}^*(\alpha)$.

Then

$$\left\{ \omega \mid \omega < \frac{1}{4 - 2\alpha} \left(2 + \lambda - \alpha \lambda - |b_1| (2 - 4\alpha + \lambda + \alpha \lambda) \right) \right\} \subset f(U).$$

Remark 8.3.1. If we put $\lambda = 0$ in above corollary, we obtain the covering result of Jahangiri [46].
Theorem 8.3.5. If \(f \in TS^*_{H,\lambda}(\alpha) \) then \(f \) is convex in the disc

\[
|z| \leq \min_k \left\{ \frac{(1-\alpha)(1-|b_1|)}{k \left[(1-\alpha)-(1+\alpha)|b_1| \right]} \right\}^{\frac{1}{k-1}}, \quad (k = 2,3,4,\ldots).
\]

Proof. Let \(f \in TS^*_{H,\lambda}(\alpha) \), and let \(r(0 < r < 1) \) be fixed. Then \(r^{-1}f(rz) \in TS^*_{H,\lambda}(\alpha) \) and we have

\[
\sum_{k=2}^{\infty} k^2 (|a_k|+|b_k|) r^{k-1} = \sum_{k=2}^{\infty} k (|a_k|+|b_k|) (kr^{k-1}) \\
\leq \sum_{k=2}^{\infty} \frac{(k-\alpha)}{1-\alpha} \varphi(k,\lambda) |a_k| + \frac{k+\alpha}{1-\alpha} \varphi(k,\lambda) |b_k| kr^{k-1} \\
\leq 1-b_1,
\]

provided

\[
kr^{k-1} \leq \frac{1-|b_1|}{1-\frac{1+\alpha}{1-\alpha} |b_1|}
\]

which is true if

\[
r \leq \min_k \left\{ \frac{(1-\alpha)(1-|b_1|)}{k \left[(1-\alpha)-(1+\alpha)|b_1| \right]} \right\}^{\frac{1}{k-1}}, \quad (k = 2,3,4,\ldots).
\]

\[\square\]

8.4 Convolution and Convex Combinations

In this section, we show that the class \(TS^*_{H,\lambda}(\alpha) \) is closed under convolution and convex combinations. We need the following definition of convolution of two harmonic functions.

Let the functions \(f(z) \) be defined by

\[
f(z) = z - \sum_{k=2}^{\infty} |a_k| z^k + \sum_{k=1}^{\infty} |b_k| z^k
\]

and

\[
F(z) = z - \sum_{k=2}^{\infty} |A_k| z^k + \sum_{k=1}^{\infty} |B_k| z^k,
\]

we define the convolution of two harmonic functions \(f \) and \(F \) as
\((f * F)(z) = f(z) * F(z) = z - \sum_{k=2}^{\infty} |a_k A_k|^z^k + \sum_{k=1}^{\infty} |b_k B_k|\bar{z}^k. \) (8.4.1)

Using this definition, we show that the class \(TS_{H,\lambda}^*(\alpha)\) is closed under convolution.

Theorem 8.4.1. For \(0 \leq \beta \leq \alpha < 1\), let \(f \in TS_{H,\lambda}^*(\alpha)\) and \(F \in TS_{H,\lambda}^*(\beta)\).

Then \(f * F \in TS_{H,\lambda}^*(\alpha) \subset TS_{H,\lambda}^*(\beta)\).

Proof. Let \(f(z) = z - \sum_{k=2}^{\infty} |a_k A_k|^z^k + \sum_{k=1}^{\infty} |b_k B_k|^z^k\) be in \(TS_{H,\lambda}^*(\alpha)\)

and

\(F(z) = z - \sum_{k=2}^{\infty} |A_k|^z^k + \sum_{k=1}^{\infty} |B_k|^z^k\), be in \(TS_{H,\lambda}^*(\beta)\).

Then the convolution \(f * F\) is given by (8.4.1). We wish to show that the coefficients of \(f * F\) satisfy the required condition given in Theorem 8.3.2. For \(F \in TS_{H,\lambda}^*(\beta)\), we note that \(|A_k| \leq 1\) and \(|B_k| \leq 1\). Now, for the convolution function \(f * F\), we obtain

\[
\sum_{k=2}^{\infty} \frac{k-\alpha}{1-\alpha} \varphi(k, \lambda)|a_k A_k| + \sum_{k=1}^{\infty} \frac{k+\alpha}{1-\alpha} \varphi(k, \lambda)|b_k B_k|
\]

\[\leq \sum_{k=2}^{\infty} \frac{k-\alpha}{1-\alpha} \varphi(k, \lambda)|a_k| + \sum_{k=1}^{\infty} \frac{k+\alpha}{1-\alpha} \varphi(k, \lambda)|b_k|\]

\[\leq 1. \quad \text{(Since } f \in TS_{H,\lambda}^*(\alpha).\text{)}
\]

Therefore \(f * F \in TS_{H,\lambda}^*(\alpha) \subset TS_{H,\lambda}^*(\beta)\). \(\square\)

Next, we show that \(TS_{H,\lambda}^*(\alpha)\) is closed under convex combinations of its members.

Theorem 8.4.2. The class \(TS_{H,\lambda}^*(\alpha)\) is closed under convex combination.

Proof. For \(i = 1, 2, 3, \ldots\), let \(f_i \in TS_{H,\lambda}^*(\alpha)\), where \(f_i(z)\) is given by

\[f_i(z) = z - \sum_{k=2}^{\infty} |a_k|^z^k + \sum_{k=1}^{\infty} |b_k|^z^k.\]

Then by (8.3.5), we have

\[
\sum_{k=1}^{\infty} \left(\frac{k-\alpha}{1-\alpha} |a_k| + \frac{k+\alpha}{1-\alpha} |b_k| \right) \varphi(k, \lambda) \leq 2. \quad \text{(8.4.2)}
\]
For $\sum_{i=1}^{\infty} t_i = 1, 0 \leq t_i \leq 1$, the convex combination of f_i may be written as

$$\sum_{i=1}^{\infty} t_i f_i(z) = z - \sum_{k=1}^{\infty} \left(\sum_{i=1}^{\infty} t_i |a_k| \right) z^k + \sum_{k=1}^{\infty} \left(\sum_{i=1}^{\infty} t_i |b_k| \right) z^k.$$ \hspace{1cm} (8.4.3)

Then by (8.4.2), we have

$$\sum_{k=1}^{\infty} \left(\frac{k-\alpha}{1-\alpha} \sum_{i=1}^{\infty} t_i |a_k| \right) + \frac{k+\alpha}{1-\alpha} \left(\sum_{i=1}^{\infty} t_i |b_k| \right) \phi(k, \lambda)$$

$$= \sum_{i=1}^{\infty} t_i \left\{ \sum_{k=1}^{\infty} \left(\frac{k-\alpha}{1-\alpha} |a_k| + \frac{k+\alpha}{1-\alpha} |b_k| \right) \phi(k, \lambda) \right\}$$

$$\leq 2 \sum_{i=1}^{\infty} t_i = 2.$$

This is the condition required by (8.3.5) and so $\sum_{i=1}^{\infty} t_i f_i \in TS_{*,\lambda}^*(\alpha)$. \Box

8.5 A Family of Class Preserving Integral Operator

Let $f(z) = h(z) + g(z)$ be defined by (8.1.1), then $F(z)$ defined by the relation

$$F(z) = c + z^{-c-1} \int_{c}^{1} h(t) dt + z^{-c-1} \int_{c}^{1} g(t) dt, \quad (c > -1).$$ \hspace{1cm} (8.5.1)

Theorem 8.5.1. Let $f(z) = h(z) + \overline{g(z)} \in S_H$ be given by (8.2.6) and $f \in TS_{*,\lambda}^*(\alpha)$ then $F(z)$ defined by (8.5.1) is also in the class $TS_{*,\lambda}^*(\alpha)$.

Proof. From the representation (8.5.1) of $F(z)$, it follows that

$$F(z) = z - \sum_{k=2}^{\infty} \frac{c+1}{c+k} |a_k| z^k + \sum_{k=1}^{\infty} \frac{c+1}{c+k} |b_k| z^k.$$

Since $f \in TS_{*,\lambda}^*(\alpha)$, we have

$$\sum_{k=2}^{\infty} \frac{k-\alpha}{1-\alpha} \phi(k, \lambda) |a_k| + \sum_{k=1}^{\infty} \frac{k+\alpha}{1-\alpha} \phi(k, \lambda) |b_k| \leq 1.$$ \hspace{1cm} (8.5.2)

Now

$$\sum_{k=2}^{\infty} \frac{k-\alpha}{1-\alpha} \phi(k, \lambda) \left(\frac{c+1}{c+k} \right) |a_k| + \sum_{k=1}^{\infty} \frac{k+\alpha}{1-\alpha} \phi(k, \lambda) \left(\frac{c+1}{c+k} \right) |b_k|$$
Thus \(F(z) \in TS_{H,\lambda}^*(\alpha) \).