Chapter Three

A Linear Model as an Approximation to Gompertz Model
Chapter - III

A Linear Model As An Approximation To Gompertz Model:

3.1 The Proposed Model:

Based on the relationship between monomolecular model and Gompertz model, a model having linearly appearing parameters has also been developed as an adequate approximation of Gompertz model. Ratkowsky (1983) has given the following functional form for Gompertz model.

\[r = \exp\left\{\alpha + \beta \rho^x\right\} \] (3.1)

On taking Natural Log Transformation of (3.1) we have

\[\log(r) = \alpha + \beta \rho^x \] (3.2)

Equation (3.2) is another form of writing the model (3.1).

If a graph is plotted between \(Y \) and \(X \), it will show an ‘S’-shape. From equation (3.2) we learn that the graph between \(\log(Y) \) and \(X \) will show an asymptotic shape. This fact has been observed for all data sets considered in present investigation.

In Chapter-II we have considered an approximation of the Right Hand Side of equation (3.2), on the basis of suggestions of Misra (1992) as
combining equations (3.2) and (3.3) we can write an approximation of the model (3.1) as

\[\log(Y) = a + b.X + \frac{c}{X} \quad \ldots \ldots \ (3.4) \]

The appropriateness of model (3.4) as an approximation to Gompertz model can be verified by fitting it to various data sets obtained from various sources and carrying out its analysis and its residual studies as described in Chapter Two.

3.2 Estimation of Parameters and Analysis of Residuals:

The model (3.4) can be written as

\[Z = \log(Y) = a + b.X + \frac{c}{X} \quad \ldots \ldots \ (3.5) \]

The constants \(a, b, c, \alpha, \beta \) and \(\rho \) are all unknown parameters. Applying the Standard Procedures as discussed in Chapter Two, the least square estimates of parameters \(a, b, \) and \(c \) will be

\[\hat{B} = (X'X)^{-1}X'Z \quad \ldots \ldots \ (3.6) \]
where

\[
\hat{B} = \begin{bmatrix}
 a & b & c \\
 1 & X_1 & \frac{1}{X_1} \\
 1 & X_2 & \frac{1}{X_2} \\
 \vdots & \vdots & \vdots \\
 1 & X_n & \frac{1}{X_n}
\end{bmatrix}
\]

\[
X = \begin{bmatrix}
 1 & X_1 & \frac{1}{X_1} \\
 1 & X_2 & \frac{1}{X_2} \\
 \vdots & \vdots & \vdots \\
 1 & X_n & \frac{1}{X_n}
\end{bmatrix}_{n \times 3}
\]

\[
Z = \begin{bmatrix}
 Z_1 & Z_2 & \ldots & Z_n
\end{bmatrix}
\]

The variance-covariance matrix of \(\hat{B} \) denoted by \(\text{Var}(\hat{B}) \) will be

\[
\text{Var}(\hat{B}) = (X'X)^{-1}\sigma^2
\]

\[
\ldots (3.7)
\]

The values of coefficient of determination \(R^2 \), Residual Mean Square \(s^2 \), Mean Absolute Error (MAE) and Standardized residuals are computed in a manner identical to methods discussed in Chapter Two. Similarly the analysis of residuals i.e. residual plots and Normal Probability Plot for the residuals have also been carried out as discussed in Chapter Two. The analysis table displaying values of \(\log(Y) \), \(\log(\hat{Y}) \), \(e_i = \log(Y) - \log(\hat{Y}) \) etc. are also given for all data sets from 3.3.1 to 3.3.8.

It is very important to note here that Draper and Smith (1998, Pg. 278) have specifically stated that the residuals to examine, for model like (3.5) in which log transformation has been used on dependent variable \(Y \),
should be of the form $\log(Y) - \log(\hat{Y})$. They have further stated that all tests and confidence statements must be made in the Transformed Space only.

Draper and Smith (1998, III Edition, Pg. 278) have specifically commented that: “Suppose we have fitted a model to $\ln(Y)$, and we make a prediction in $\ln(\hat{Y})$ at a certain set of X^*s. We can, if we wish, evaluate $\hat{Y} = \exp\{\ln(\hat{Y})\}$ and predict in the original space. Also, confidence statement on $E(\ln(Y))$ with interval (a, b) can be translated into a confidence statement with interval (e^a, e^b) in the Y-space. It will not be symmetric about the predicted value \hat{Y}, of course. We can also evaluate residuals $Y_i - \hat{Y}_i$ at the data points, if we wish. These residuals are not, however, checked; these are not the residuals that should satisfy the residuals checks for normality, and so on”.

Box and Cox (1964) have given a family of transformations on dependent variable Y as

(i) $(Y^\lambda - 1)/\lambda$, for $\lambda \neq 0$
(ii) $\log(Y)$, for $\lambda = 0$

the model (3.4) also admits a transformation on dependent variable Y as in Box and Cox (1964) family of transformations if $\lambda = 0$.

It has also been remarked that there is no relationship between the parameters of the transformed model and those of the original model,
therefore any attempt to find such a relationship is not fruitful. The analysis
of the residuals has also been carried out in the same lines as in Chapter-II.

3.3 Fitting of Model (3.4) to Various Data Sets:

A variety of the data sets from (3.3.1) to (3.3.8) has been obtained from different sources to which the model (3.4) has been applied.

The data set 3.3.1 has been obtained from Kutner et al (2004) which relates to a study on effectiveness of coupons offering a price reduction on a given product. The predictor variable X represents the amount of price reduction offered to coupons and the response variable Y represents the number of coupons redeemed.

The data set 3.3.2, obtained from Draper and Smith (1998) relates to the study of mean dry kernel weight of four plants as dependent variable Y and mean time since silking of four plants as independent variable X.

The data set 3.3.3 obtained from Kutner et al (2004), is based on a study relating the deposit amount and number of one liter returnable soft drink bottles. Here X is different amount of deposit for returnable bottles and Y is number of bottles returned.

The data set 3.3.4 and 3.3.5 are obtained from N Okendro et al (2009), they relate to growth performance of *Tor Putitora* (a fish species) under the monoculture and polyculture systems with the stocking densities of
4000 and 1600 per hectare respectively in earthen ponds of 0.1 hectare each. Here Y is the Average weight gain in gm and X is Time in months.

The data set 3.3.6 obtained from Prajneshu (1998), relates the wheat production (in quintals per hectare) of India during the years 1973-74 to 1996-97. Here the dependent variable Y represents wheat yield and the independent variable X represents Time in years.

The data set 3.3.7 obtained from Cavallini, F (1993), regarding the time evolution of an algal sample taken in the Adriatic Sea. Here the dependent variable Y is the biomass in mm square and the independent variable X is time in Days.

The data set 3.3.8 obtained from Kutner et al (2004), relates to a study of the effectiveness of coupons offering a price reduction on given product. The predictor variable X represents the amount of price reduction offered to coupons and the response variable Y represents the proportion of coupons redeemed.

The least square estimates of coefficients a, b and c of the model (3.4) fitted to data sets 3.3.1 to 3.3.8 are given in their respective tables. The values of coefficient of determination R^2, Residual Mean Square s^2 and Mean Absolute Error (MAE) are also provided. The tables also
provide the values of least square estimates of $\hat{Z} = \log(\hat{Y})$ and residuals $Z - \hat{Z} = \log(Y) - \log(\hat{Y})$ (as suggested by Draper and Smith 1998, pg. 278).

The values of Standardized residuals have been calculated for all data sets. In all cases, the values of standardized residuals lie in between -3 to +3. The values of standardized residuals confirm that residuals do not reflect model inadequacy. (Montgomery et al. 2003).

The graphs describing observed and fitted values, residual plots and Normal Probability Plot for the residuals are also drawn for all data sets viz. 3.3.1 to 3.3.8. The graph of observed versus fitted values confirms an excellent fit in case of all data sets. It is very interesting to note that plot of log (Y) versus X and also plot of $\log(\hat{Y})$ versus X are both asymptotic in shape. This confirms type of relationship between asymptotic model and Gompertz model.

It has been observed that the values of R^2 are very high and values of Residual Mean Square s^2 are very small for all data sets. The Mean Absolute Error is also considerably small.

The residual plots of e_i versus X_i show a horizontal band for all data sets. It confirms that residuals fulfil the model assumptions. The points of Normal Probability Plot for the residuals are approximately in a straight line which means that errors follow normal distribution. All these
observations lead to the conclusion that the model (3.4) can be considered as a good approximation of Gompertz model represented by equation (3.2). Moreover without loss of generality we can consider $X=1$ instead of $X=0$, wherever necessary.

It is to be emphasized that the analysis of residuals on all data sets has been carried out as per suggestions of Draper and Smith (1998, III Edition, Pg. 278), Montgomery et al (2003) as well as Box and Cox (1964). The analysis along with the necessary graphs for all data sets is as follows.
Data Set: 3.3.1

Analysis of the data

Table-1 A

<table>
<thead>
<tr>
<th>S. No.</th>
<th>X</th>
<th>Y</th>
<th>Log(Y)</th>
<th>Log((\hat{Y}))</th>
<th>Residual (Log(Y)-Log((\hat{Y})))</th>
<th>Standardized Residuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>30</td>
<td>3.401200</td>
<td>3.399770</td>
<td>0.001430</td>
<td>0.022835</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>55</td>
<td>4.007330</td>
<td>3.998320</td>
<td>0.009010</td>
<td>0.143879</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>70</td>
<td>4.248500</td>
<td>4.305870</td>
<td>-0.057370</td>
<td>-0.916131</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>100</td>
<td>4.605170</td>
<td>4.540680</td>
<td>0.064490</td>
<td>1.029829</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>137</td>
<td>4.919980</td>
<td>4.937530</td>
<td>-0.017550</td>
<td>-0.280253</td>
</tr>
</tbody>
</table>

Parameter Estimates:

Table-1 B

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\hat{a}) 4.11072</td>
</tr>
<tr>
<td>2</td>
<td>(\hat{b}) 0.0324102</td>
</tr>
<tr>
<td>3</td>
<td>(\hat{c}) -4.36499</td>
</tr>
</tbody>
</table>

Coefficient of determination (R\(^2\)) = 99.4205 percent
Residual Mean Square \((s^2) = 0.00392152\)
Mean Absolute Error \(= 0.0299705\)
GRAPH FOR THE DATA SET 3.3.1

Plot of y vs x

Plot of LOG(y) with Predicted Values
GRAPHS: FOR THE DATA SET 3.3.1

Residual Plot

Normal Probability Plot for e
Data Set: 3.3.2

Analysis of the data

Table-2 A

<table>
<thead>
<tr>
<th>S. No.</th>
<th>X</th>
<th>Y</th>
<th>Log(Y)</th>
<th>Log(Ŷ)</th>
<th>Residual (Log(Y)-Log(Ŷ))</th>
<th>Standardized Residuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.625</td>
<td>11.44</td>
<td>2.437120</td>
<td>2.412840</td>
<td>0.024280</td>
<td>0.279671</td>
</tr>
<tr>
<td>2</td>
<td>19.75</td>
<td>29.51</td>
<td>3.384730</td>
<td>3.452550</td>
<td>-0.067820</td>
<td>-0.781189</td>
</tr>
<tr>
<td>3</td>
<td>28.625</td>
<td>69.05</td>
<td>4.234830</td>
<td>4.170150</td>
<td>0.064680</td>
<td>0.745021</td>
</tr>
<tr>
<td>4</td>
<td>41.75</td>
<td>98.79</td>
<td>4.593000</td>
<td>4.672950</td>
<td>-0.079950</td>
<td>-0.920909</td>
</tr>
<tr>
<td>5</td>
<td>49.625</td>
<td>138.01</td>
<td>4.927330</td>
<td>4.847340</td>
<td>0.079990</td>
<td>0.921370</td>
</tr>
<tr>
<td>6</td>
<td>69.625</td>
<td>162.82</td>
<td>5.092650</td>
<td>5.113820</td>
<td>-0.021170</td>
<td>-0.243848</td>
</tr>
</tbody>
</table>

Parameter Estimates:

Table-2 B

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ā</td>
</tr>
<tr>
<td>2</td>
<td>ŕ</td>
</tr>
<tr>
<td>3</td>
<td>ĉ</td>
</tr>
</tbody>
</table>

Coefficient of determination (R^2) = 99.5658 percent

Residual Mean Square (s^2) = 0.00753708

Mean Absolute Error = 0.0563151
Plot of y vs x

Plot of $\log(y)$ with Predicted Values
GRAPHS FOR THE DATA SET 3.3.2

Residual Plot

Normal Probability Plot for ϵ
Data Set: 3.3.3

Analysis of the data

Table-3 A

<table>
<thead>
<tr>
<th>S. No.</th>
<th>X</th>
<th>Y</th>
<th>Log(Y)</th>
<th>Log(Ŷ)</th>
<th>Residual (Log(Y)-Log(Ŷ))</th>
<th>Standardized Residuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>72</td>
<td>4.276670</td>
<td>4.252890</td>
<td>0.023780</td>
<td>0.257952</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>103</td>
<td>4.634730</td>
<td>4.725780</td>
<td>-0.091050</td>
<td>-0.987860</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>170</td>
<td>5.135800</td>
<td>5.090060</td>
<td>0.045740</td>
<td>0.496162</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>296</td>
<td>5.690360</td>
<td>5.659670</td>
<td>0.030690</td>
<td>0.332908</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>406</td>
<td>6.006350</td>
<td>5.928580</td>
<td>0.077770</td>
<td>0.843606</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>449</td>
<td>6.107020</td>
<td>6.193950</td>
<td>-0.086930</td>
<td>-0.942968</td>
</tr>
</tbody>
</table>

Parameter Estimates:

Table-3 B

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.67941</td>
</tr>
<tr>
<td>2</td>
<td>0.0516623</td>
</tr>
<tr>
<td>3</td>
<td>-1.05969</td>
</tr>
</tbody>
</table>

Coefficient of determination \((R^2) = 99.0956\) percent

Residual Mean Square \((s^2) = 0.079255\)

Mean Absolute Error \(= 0.0593274\)
GRAPHS FOR THE DATA SET 3.3.3

Plot of y vs x

Plot of LOG(y) with Predicted Values
GRAPHS FOR THE DATA SET 3.3.3

Residual Plot

Normal Probability Plot for e
Data Set: 3.3.4

Analysis of the data

Table-4 A

<table>
<thead>
<tr>
<th>S. No.</th>
<th>X</th>
<th>Y</th>
<th>Log(Y)</th>
<th>Log((\hat{Y}))</th>
<th>Residual (Log(Y)- Log((\hat{Y})))</th>
<th>Standardized Residuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>320</td>
<td>5.768320</td>
<td>5.761010</td>
<td>0.007310</td>
<td>0.242572</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>400</td>
<td>5.991460</td>
<td>6.014960</td>
<td>-0.023500</td>
<td>-0.779813</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>475</td>
<td>6.163310</td>
<td>6.179190</td>
<td>-0.015880</td>
<td>-0.526954</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>550</td>
<td>6.309920</td>
<td>6.314520</td>
<td>-0.004600</td>
<td>-0.152644</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>650</td>
<td>6.476970</td>
<td>6.442630</td>
<td>0.034340</td>
<td>1.139522</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>725</td>
<td>6.586170</td>
<td>6.567850</td>
<td>0.018320</td>
<td>0.607922</td>
</tr>
<tr>
<td>7</td>
<td>18</td>
<td>825</td>
<td>6.715380</td>
<td>6.691620</td>
<td>0.023760</td>
<td>0.788440</td>
</tr>
<tr>
<td>8</td>
<td>23</td>
<td>950</td>
<td>6.856460</td>
<td>6.896240</td>
<td>-0.039780</td>
<td>-1.320040</td>
</tr>
</tbody>
</table>

Parameter Estimates:

Table-4 B

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\hat{a})</td>
</tr>
<tr>
<td>2</td>
<td>(\hat{b})</td>
</tr>
<tr>
<td>3</td>
<td>(\hat{c})</td>
</tr>
</tbody>
</table>

Coefficient of determination \((R^2) = 99.5293\) percent
Residual Mean Square \((s^2) = 0.000908145\)
Mean Absolute Error \(= 0.0209357\)
GRAPHIS FOR THE DATA SET 3.3.4

Plot of y vs x

Plot of LOG(y) with Predicted Values
Residual Plot

Normal Probability Plot for e

96
Data Set: 3.3.5

Analysis of the data

Table-5 A

<table>
<thead>
<tr>
<th>S. No.</th>
<th>X</th>
<th>Y</th>
<th>Log(Y)</th>
<th>Log(Ŷ)</th>
<th>Residual (Log(Y) - Log(Ŷ))</th>
<th>Standardized Residuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>325</td>
<td>5.78383</td>
<td>5.77382</td>
<td>0.010010</td>
<td>0.220271</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>430</td>
<td>6.06379</td>
<td>6.09043</td>
<td>-0.026640</td>
<td>-0.586216</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>500</td>
<td>6.21461</td>
<td>6.26191</td>
<td>-0.047300</td>
<td>-1.040841</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>605</td>
<td>6.40523</td>
<td>6.39294</td>
<td>0.012290</td>
<td>0.270443</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>710</td>
<td>6.56526</td>
<td>6.51385</td>
<td>0.051410</td>
<td>1.131282</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>795</td>
<td>6.67834</td>
<td>6.63072</td>
<td>0.047620</td>
<td>1.047882</td>
</tr>
<tr>
<td>7</td>
<td>18</td>
<td>850</td>
<td>6.74524</td>
<td>6.74556</td>
<td>-0.000320</td>
<td>-0.007042</td>
</tr>
<tr>
<td>8</td>
<td>23</td>
<td>980</td>
<td>6.88755</td>
<td>6.93461</td>
<td>-0.047060</td>
<td>-1.035560</td>
</tr>
</tbody>
</table>

Parameter Estimates:

Table-5 B

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.10101</td>
</tr>
<tr>
<td>2</td>
<td>0.036932</td>
</tr>
<tr>
<td>3</td>
<td>-0.364121</td>
</tr>
</tbody>
</table>

Coefficient of determination (R^2) = 98.953 percent
Residual Mean Square (s^2) = 0.00206516
Mean Absolute Error = 0.30334
GRAPHS FOR THE DATA SET 3.3.5

Plot of y vs x

Plot of $\log(y)$ with Predicted Values

98
GRAPHS FOR THE DATA SET 3.3.5

Residual Plot

Normal Probability Plot for e

99
Data Set: 3.3.6

Analysis of the data

Table-6 A

<table>
<thead>
<tr>
<th>S. No.</th>
<th>X</th>
<th>Y</th>
<th>Log(Y)</th>
<th>Log(\hat{Y})</th>
<th>Residual (Log(Y) - Log(\hat{Y}))</th>
<th>Standardized Residuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>11.72</td>
<td>2.4613</td>
<td>2.46832</td>
<td>-0.007020</td>
<td>-0.184917</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>13.38</td>
<td>2.59376</td>
<td>2.56875</td>
<td>0.025010</td>
<td>0.658799</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>14.1</td>
<td>2.64617</td>
<td>2.62202</td>
<td>0.024150</td>
<td>0.636146</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>13.87</td>
<td>2.62973</td>
<td>2.6635</td>
<td>-0.033770</td>
<td>-0.889550</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>14.8</td>
<td>2.69463</td>
<td>2.70026</td>
<td>-0.005630</td>
<td>-0.148302</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>15.68</td>
<td>2.75239</td>
<td>2.73467</td>
<td>0.017720</td>
<td>0.468770</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>14.36</td>
<td>2.66445</td>
<td>2.76772</td>
<td>-0.103270</td>
<td>-2.720280</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>16.3</td>
<td>2.79117</td>
<td>2.79994</td>
<td>-0.008770</td>
<td>-0.231014</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>16.91</td>
<td>2.82791</td>
<td>2.83159</td>
<td>-0.003680</td>
<td>-0.096936</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>18.16</td>
<td>2.89922</td>
<td>2.86285</td>
<td>0.036370</td>
<td>0.958038</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>18.43</td>
<td>2.91398</td>
<td>2.89382</td>
<td>0.020160</td>
<td>0.531043</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>18.7</td>
<td>2.92852</td>
<td>2.92458</td>
<td>0.003940</td>
<td>0.103785</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>20.46</td>
<td>3.01847</td>
<td>2.95517</td>
<td>0.063300</td>
<td>1.667413</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>19.16</td>
<td>2.95282</td>
<td>2.98564</td>
<td>-0.032820</td>
<td>-0.864526</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>20.02</td>
<td>2.99673</td>
<td>3.016</td>
<td>-0.019270</td>
<td>-0.507599</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>22.41</td>
<td>3.10951</td>
<td>3.04628</td>
<td>0.063230</td>
<td>1.665569</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>21.21</td>
<td>3.05447</td>
<td>3.07648</td>
<td>-0.022010</td>
<td>-0.579775</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>22.81</td>
<td>3.1272</td>
<td>3.10663</td>
<td>0.020570</td>
<td>0.541843</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>23.97</td>
<td>3.1768</td>
<td>3.13673</td>
<td>0.040070</td>
<td>1.055501</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>23.27</td>
<td>3.14716</td>
<td>3.16679</td>
<td>-0.019630</td>
<td>-0.517082</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>23.8</td>
<td>3.16969</td>
<td>3.19682</td>
<td>-0.027130</td>
<td>-0.714643</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>25.59</td>
<td>3.2422</td>
<td>3.22681</td>
<td>0.015390</td>
<td>0.405395</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>24.93</td>
<td>3.21607</td>
<td>3.25678</td>
<td>-0.040710</td>
<td>-1.072360</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>26.59</td>
<td>3.28054</td>
<td>3.28672</td>
<td>-0.006180</td>
<td>-0.162790</td>
</tr>
</tbody>
</table>
Parameter Estimates:

Table-6 B

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>\hat{a}</td>
</tr>
<tr>
<td>2</td>
<td>\hat{b}</td>
</tr>
<tr>
<td>3</td>
<td>\hat{c}</td>
</tr>
</tbody>
</table>

Coefficient of determination (R^2) = 97.5959 percent
Residual Mean Square (s^2) = 0.00144119
Mean Absolute Error = 0.0274924
GRAPHS FOR THE DATA SET 3.3.6

Plot of y vs x

Plot of $\log(y)$ with Predicted Values
Data Set: 3.3.7

Analysis of the data

Table-7 A

<table>
<thead>
<tr>
<th>S. No.</th>
<th>X</th>
<th>Y</th>
<th>Log(Y)</th>
<th>Log((\hat{Y}))</th>
<th>Residual (\frac{\text{Log}(Y) - \text{Log}(\hat{Y})}{\text{Log}(\hat{Y})})</th>
<th>Standardized Residuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>0.004760</td>
<td>-5.347510</td>
<td>-6.107560</td>
<td>0.760050</td>
<td>1.169607</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>0.010500</td>
<td>-4.556380</td>
<td>-4.038990</td>
<td>-0.517390</td>
<td>-0.796188</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>0.020700</td>
<td>-3.877620</td>
<td>-3.053650</td>
<td>-0.823970</td>
<td>-1.287970</td>
</tr>
<tr>
<td>4</td>
<td>23</td>
<td>0.061900</td>
<td>-2.782240</td>
<td>-1.927110</td>
<td>-0.855130</td>
<td>-1.315921</td>
</tr>
<tr>
<td>5</td>
<td>26</td>
<td>0.337000</td>
<td>-1.087670</td>
<td>-1.429700</td>
<td>0.342030</td>
<td>0.526335</td>
</tr>
<tr>
<td>6</td>
<td>31</td>
<td>0.740000</td>
<td>-0.301105</td>
<td>-0.773428</td>
<td>0.472323</td>
<td>0.726837</td>
</tr>
<tr>
<td>7</td>
<td>39</td>
<td>1.700000</td>
<td>0.530628</td>
<td>0.011720</td>
<td>0.518908</td>
<td>0.798524</td>
</tr>
<tr>
<td>8</td>
<td>44</td>
<td>2.450000</td>
<td>0.896088</td>
<td>0.404611</td>
<td>0.491477</td>
<td>0.756312</td>
</tr>
<tr>
<td>9</td>
<td>54</td>
<td>3.500000</td>
<td>1.252760</td>
<td>1.060790</td>
<td>0.191970</td>
<td>0.295414</td>
</tr>
<tr>
<td>10</td>
<td>64</td>
<td>4.500000</td>
<td>1.504080</td>
<td>1.611680</td>
<td>-0.107600</td>
<td>-0.165581</td>
</tr>
<tr>
<td>11</td>
<td>74</td>
<td>5.090000</td>
<td>1.627280</td>
<td>2.099950</td>
<td>-0.472670</td>
<td>-0.727371</td>
</tr>
</tbody>
</table>

Parameter Estimates:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>(\hat{a})</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.819609</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.0319223</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-80.0615</td>
<td></td>
</tr>
</tbody>
</table>

Coefficient of determination \((R^2)\) = 95.0003 percent

Residual Mean Square \((s^2)\) = 0.422284

Mean Absolute Error = 0.504865
GRAPHS FOR THE DATA SET 3.3.7

Plot of y vs x

Plot of LOG(y) with Predicted Values
Residual Plot

Normal Probability Plot for e
Data Set: 3.3.8

Analysis of the data

Table-8 A

<table>
<thead>
<tr>
<th>S. No.</th>
<th>X</th>
<th>Y</th>
<th>Log(Y)</th>
<th>Log(\hat{Y})</th>
<th>Residual (Log(Y)-Log(\hat{Y}))</th>
<th>Standardized Residuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>0.15</td>
<td>-1.89712</td>
<td>-1.89854</td>
<td>0.001420</td>
<td>0.022676</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>0.275</td>
<td>-1.29098</td>
<td>-1.29999</td>
<td>0.009010</td>
<td>0.143879</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>0.35</td>
<td>-1.04982</td>
<td>-0.992442</td>
<td>-0.057378</td>
<td>-0.916259</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>0.5</td>
<td>-0.693147</td>
<td>-0.757642</td>
<td>0.064495</td>
<td>1.029909</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>0.685</td>
<td>-0.378336</td>
<td>-0.36079</td>
<td>-0.017546</td>
<td>-0.280189</td>
</tr>
</tbody>
</table>

Parameter Estimates:

Table-8 B

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>\hat{a}</td>
</tr>
<tr>
<td>2</td>
<td>\hat{b}</td>
</tr>
<tr>
<td>3</td>
<td>\hat{c}</td>
</tr>
</tbody>
</table>

Coefficient of determination \((R^2) = 99.4205\) percent
Residual Mean Square \((s^2) = 0.00392152\)
Mean Absolute Error \(= 0.0299705\)
GRAPHS FOR THE DATA SET 3.3.8

Plot of y vs x

Plot of $\log(y)$ with Predicted Values
GRAPHS FOR THE DATA SET 3.3.8

Residual Plot

![Residual Plot]

Normal Probability Plot for \(e \)

![Normal Probability Plot]

109
3.4 Conclusions:

The data sets arising from different fields have been considered for the application of proposed model (3.4), which has satisfactorily described the data sets. The graph between X and Y resembles a ‘S’-shape where as the graph between Log(Y) and X as well as super imposed graph between \(\log(\hat{Y}) \) and X are both asymptotic in nature. It confirms the theoretical relationship between Gompertz and asymptotic model. The graphs between \(\log(\hat{Y}) \) and X show an excellent fit for all data sets.

A very high values of \(R^2 \) in percentage have been observed for all data sets. The magnitude of residual sum of squares \(s^2 \) is also very small for all data sets. The values of mean absolute errors are also very small in all cases. The values of Standardized residuals are also between -3 to +3 which confirm the absence of any outliers in the data.

The residual plots are showing horizontal band for all data sets and can be considered as satisfactory and are not showing any unusual pattern. The Normal Probability Plot for the residuals obtained for all data sets also show a straight line.

All these discussions lead to the conclusion that the model (3.4) is a good approximation of Gompertz model represented by equation (3.2).