CHAPTER 3

AN AUTOMORPHIC GROUP OF A SANDWICH NEARRING

INTRODUCTION:

It has been already established that if \(\phi_k : R \rightarrow R \) is a homeomorphism, the groups \(\text{Aut}(c(R,R),+,\phi_k) \) and \(R^* \) are isomorphic; where \(k \in C(R,R) \). Also, sandwich nearrings \((c(R,R),+,\phi_k) \), is isomorphic to the nearring \((c(R,R),+,0), \phi \in \text{u}(c(R,R),+,0) \). In this chapter, we have proved that \(\text{Aut}(c(R,R),+,\phi_k) \cong R^* \) on automorphism groups of laminated nearrings. A lot of work has been done by Magill [18].

Theorem 3.1: If \(\phi_k : R \rightarrow R \) is a homeomorphism, then the groups \(\text{Aut}(c(R,R),+,\phi_k) \) and \(R^* \) are isomorphic, where \(k \in c(R,R) \).

Proof: In Chapter 2, we have proved that the nearring \((c(R,R),+,\phi_k), \phi \in \text{u}(c(R,R)) \) is isomorphic to the nearring \((c(R,R),+,0) \).

In this chapter, we need only to show that

\[
\text{Aut}(c(R,R),+,\phi_k) \cong R^*.
\]

We have homeomorphisms:

\[
h : R \rightarrow R
\]

and

\[
t : R \rightarrow R
\]
For $F \in \text{Aut}(c(R,R),+,\phi_k)$ such that $t \in \text{Aut}(R,+)$,

$$s_{ot} = h s_f$$

for $s(x) = x$

s is identity of $c(R,R)$, and such that $t \circ f = F(f) \circ h$ $\forall f \in c(R,R)$.

Since $h = t$, we have

$$F(f) = t \circ f \circ t^{-1}.$$

Now it remains to show that distinct $t_1, t_2 \in \text{HA}(R)$ define distinct $F_{1}(f) = t_1 \circ f \circ t_1^{-1}$.

But this follows from the uniqueness guaranteed by Theorem 1 of Chapter 2.

For our purposes here we say that a surjective $\phi_k \in c(R,R)$ is nearly increasing if there is an interval $(-r,r)$ so that ϕ_k is increasing on $R\vert (-r,r) = (-\infty,-r] \cup [r,\infty]$ that is if $x, x' \in R\vert (-r,r)$ and $x < x'$ then $\phi_k(x) < \phi_k(x')$.

Similarly, a surjective $\phi_k \in c(R,R)$ is nearly decreasing if there is an interval $(-r,r)$ so that ϕ_k is decreasing on $R\vert (-r,r)$, that is, if $x,x' \in R\vert (-r,r)$ and $x < x'$, then $\phi_k(x) > \phi_k(x')$. A surjective $\phi_k \in c(R,R)$ is nearly monotonic if it is either nearly increasing or nearly decreasing.

Theorem 3.2: Let $\phi_k \in c(R,R)$ be surjective and nearly monotonic, then the following are equivalent:
(i) The mapping ϕ_k is a homeomorphism,

(ii) $(c(R,R),+,0) \cong (c(R,R),+,\phi_k)$,

(iii) $(c(R,R),+,\phi_k)$ has an identity,

(iv) $\text{Aut}(c(R,R),+,\phi_k) \cong \mathbb{R}^*$,

(v) $\text{Aut}(c(R,R),+,\phi_k)$ has more than two elements.

Proof: The equivalence of 1), 2), 3) follow from Chapter 2 Theorem 2.3.

From the above theorem we have that 1) \rightarrow 4) and 4) \rightarrow 5).

We will be finished when we show that 5) \Rightarrow 1), each F_i has its h_i and t_i of (Theorem 1, Chapter 2).

Let F_1', F_2', F_3' be three distinct automorphism of $(c(R,R),+,\phi_k)$.

The t_i's are distinct, for it $t_i = t_j$, then $h_i \circ \phi = \phi \circ h_i = \phi \circ t_j = h_j \circ \phi_k$. For arbitrary $x \in R$, there is $y \in R$ such that $\phi(y) = x \quad \forall \ y \in R, \ x \in R$.

Hence

$$h_i(x) = h_i(\phi(y)) = \phi \circ t_i(y) = \phi \circ h_j(y) = h_j \circ \phi(y)$$
\[= h_j(x) \]

This makes \(h_i = h_j \),

and with \(F_i(f) = t_i \circ f \circ h_i^{-1} \)

\[= t_j \circ f \circ h_j^{-1} \]

\[= F_j(f) \quad \forall \ f \in C(R, R) \]

we get \(F_i = F_j \). So the \(t_i \)'s are distinct, and by this theorem

that let \(HA(R^+) \), denote the set of homeomorphisms \(f: R \rightarrow R \), such

that \(f \) is also a group automorphism of \((R, +) \). Then \(HA(R^+) \) is a

group isomorphic to \(R^* \), the multiplicative group of the field

\((R, +, \cdot) \).

In fact, each element \(f \in HA(R^+) \) is defined by

\[f(x) = ax, \text{ for some } a \in R^* \]

There are \(a_i \in R^* \) such that \(t_i(x) = a_i(x) \), from

which follows that one of the \(a_i \not\in \{ \pm 1 \} \).

So, there is an automorphism \(F \) of \((c(R, R), +, \cdot) \) which

has \(h \) and \(t \) of Theorem 1 of Chapter 2

where \(t(x) = ax \) and \(a \not\in \pm 1 \).

Our result step is to show that we may, without loss of
generality, assume \(a > 1 \). If \(a < 0 \), then \(F^2 \) has \(t^2 \) and

\[t^2(x) = t(t(x)) \]

\[= a^2(x) \]
and $a^2 > 0$ and $a^2 \neq 1$. So, we may assume that $0 < a$ if

$$0 < a < 1,$$

then F^{-1} has t^{-1}, and $t^{-1}(x) = a^{-1}x$, with $1 < a^{-1}$, so without loss of generality, we take $a > 1$.

We may assume that a to be very large. For with F having with $t(x) = ax$ and $1 < a$, then F^n has t^n with $t^n(x) = a^n x$ and

$$a^n \to +\infty$$

and

$$n \to +\infty.$$

In particular, if ϕ is monotonic on $\mathbb{R} \cap (-r, r)$ and if $x, y \in \mathbb{R}^*$ are distinct, then there is an n so that

$$a^n x, a^n y \in \mathbb{R} \cap (-r, r]$$

and

$$a^n x \neq a^n y.$$

We are ready to show that ϕ_k is injective, hence ϕ_k is a homeomorphism of \mathbb{R}. If

$$\phi_k(x) = \phi(y)$$

and

$$x \neq y$$

then

$$\phi_k(a^n x) = \phi_k \circ t^n(x)$$

$$= h^n \circ \phi_k(x)$$

$$= h^n \circ \phi_k(y)$$
\[
\phi_k \circ t^n(y) = \phi_k(a^n y).
\]

If \(x = 0 \), then \(\phi_k(0) = \phi_k(a^n y) \), for each positive integer \(n \) and this contradicts that \(\phi \) is nearly monotonic. If \(0 \not\in \{x, y\} \) there is an \(n \) so that \(a^n x, a^n y \in R(-r, r) \) and \(a^n x \neq a^n y \). Since \(\phi_k \) is nearly monotonic, we also have

\[
\phi_k(a^n x) \neq \phi_k(a^n y)
\]

Since the assumption \(\phi_k(x) = \phi_k(y) \) with \(x \neq y \) gets us into this unacceptable situation, we must have \(\phi_k(x) \neq \phi_k(y) \). If \(x \neq y \).