CHAPTER I : HEXAGONAL CLOSE PACKED STRUCTURE & DYNAMICAL MATRIX

1.1 : Introduction

1.2 : Structure of Hexagonal Close Packed Metals.

1.3 : Reciprocal Lattice, Brillouin zone, And Symmetry Directions.

1.4 : Selection of Allowed Wave Vectors.
 (a) Point lying on the face like B.
 (b) Point lying on the face like C.
 (c) Point lying on the edges like PQ.
 (d) The points on the edges like PR.
 (e) Points on the Corners of Brillouin zone.

1.5 : Approximation in the theory of Lattice Dynamics and Secular Determinant.
 1.5(a) The Adiabatic Approximation
 1.5(b) Harmonic Approximation

1.6 : The Self Consistent Field Approximation.

1.7 : Formulation of the Pseudopotential.

1.8 : The Orthogonalised Plane Wave Method.

1.9 : The Pseudopotential and Cancellation Theorem.

1.10 : Elastic Matrix.

1.11 : Crystal Equilibrium Conditions.

1.12 : HUANG's Compatibility Conditions.

1.13 : Equilibrium Condition for hcp Structure.
CHAPTER II: REVIEW OF LITERATURE ON LATTICE DYNAMICAL MODELS

2.1: Introduction
2.2: General Tensor Force Model.
2.3: General Force Model.
2.4: Axially Symmetric and Modified Axially Symmetric Model.
2.5: Mixed Model.
2.7: Pseudopotentials Method.

REFERENCES

CHAPTER III: DEVELOPMENT OF THE PRESENT MODEL

3.1: Introduction
3.2: Model for Transition Metals.
3.3: Evaluation of Coulombic Matrix Elements.
3.4: The Band Structure Matrix Elements.
3.5: Self-Consistent Dielectric screening of the Pseudopotential.
3.6: Exchange and Correlation Among Conduction Electrons.
3.7: A Two Parameter Local Model Potential.
3.8: Modwel Potential for Rare Earth Metals.
3.9: Evaluation of Model Pseudopotential Parameters.

REFERENCES
CHAPTER IV: PHONON DISPERSION RELATIONS OF HEXAGONAL CLOSE PACKED METALS

4.1: Introduction.

4.2: Dispersion Relations Along symmetry Directions.

4.3: Numerical Computations, Results and Discussion on Phonon Dispersion Relation of Rare-Earth Metals.
 4.3 (a) HOLMIUM.
 4.3 (b) TERBIUM.

4.4: Numerical Computations, Results and Discussion on Phonon Dispersion Relations of Transition Metals.
 4.4 (a) ZIRCONIUM.
 4.4 (b) YTTRIUM.
 4.4 (c) HAFNIUM.
 4.4 (d) SCANDIUM.
 4.4 (e) TITANIUM.

REFERENCES.
CHAPTER V: THERMAL PROPERTIES OF LANTHANIDES AND TRANSITION (HCP) METALS

5.1: The Theoretical Background.

5.2: Results and Discussion on the Specific Heat and Debye Characteristic Temperature of Rare Earth Metals.
 5.2 (a) HOLMIUM.
 5.2 (b) TERBIUM.

5.3: Results and Discussion on Specific Heat and Debye Characteristics Temperature for Transitions Metals.
 5.3 (a) ZIRCONIUM.
 5.3 (b) YTTRIUM.
 5.3 (c) HAFNIUM.
 5.3 (d) SCANDIUM.
 5.3 (e) TITANIUM.

5.4: Debye-Waller Factor of HCP Metals.
 5.4 (a) Introduction.
 5.4 (b) Debye-Waller Factor in the Harmonic Approximation.

5.5: Lindermann's Melting Criteria.

REFERENCES
CHAPTER VI: THE PSEUDOPOTENTIALS

6.1 Introduction.

6.2 Concept of Pseudopotential.
 (i) Self Consistent Field Approximation.
 (ii) Small-Core Approximation.

6.3 Screening, Exchange and Correlation Effects.
 1. HUBBARD
 2. GELDART & VOSKO
 3. HUBBARD & SHAW
 4. KLEINMAN AND LANGRETH
 5. SHAW AND PYNN
 6. (a) SINGWI ET AL.
 (b) SINGWI ET AL.

6.4 Total Energy of an Electron-Ion System and Normalised Wave Number Characteristic.

6.5 Model Potentials.
 1. Local Model Potential (HARRISON).
 2. Local model Potential (ASCHROFT).
 3. Local Model Potential (GURSKI and KRASKO)
 4. Local model Potential (HO).
 5. Local Model Potential (KUSHWAHA AND RAJPUT).
 7. Transition Metal Model Potential (TMMP).
 8. Rare-Earth Model Potential (REMMP).

REFERENCES.