On the basis of our observations, we support the following conclusions:

1. Effective nuclear charge is a better criterion in deciding the position of the absorption edge, edge width and the position of the principal absorption maximum than the formal charge of the absorbing ion. More is the effective nuclear charge, more will be the shift in position of the edge to the higher energy side.

2. The shift in the principal absorption maximum is related to the extent of overlap between the metal and ligand orbitals. Greater is the overlap of the metal and ligand orbitals, the more the shift of principal absorption maximum and higher energy side.

3. Edge width increases with increase in covalent character of bonds if the symmetry remains the same.

4. Tetrahedral molecular symmetry causes an enhancement of the edge width than to octahedral ones.

5. The more ionic compounds give rise to sharp white line. Covalent compounds give broadened principal absorption maxima.

6. Steric hinderance cause a more overlap of the metal and ligand orbitals which cause a shift of principal absorption
maximum to higher energy side. It also enhances the edge width.

7. The shift in the position of absorption edge will be on the higher energy side if the absorbing ion is cation. It will be on the higher energy side if the absorbing ion in a anion.

8. Ion of the second coordination sphere effects on the K-absorption edge of an ion in the first coordination sphere.

9. A general trend could not be traced out in the extended fine structure because of the greater complexity of the lattice structure and the nature of the ligand. Some ligand behaves in a different fashion in different environment. Hence it is very difficult to make any conclusive remark on it.