CONTENTS

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Particulars</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic Structure of amorphous Semiconductors</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Classification and method of preparation</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Covalently bonded amorphous semiconductors</td>
<td>2</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Oxide Glasses</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Band Models in chalcogenide glasses</td>
<td>5</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Cohen-Fritzsche-Ovshinsky model (CFO model)</td>
<td>5</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Davis-Mott model</td>
<td>7</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Small polaron model</td>
<td>8</td>
</tr>
<tr>
<td>1.4</td>
<td>Defects in chalcogenide glasses</td>
<td>9</td>
</tr>
<tr>
<td>1.5</td>
<td>Methods of investigating basic structure of amorphous semiconductors</td>
<td>15</td>
</tr>
<tr>
<td>1.5.1</td>
<td>X-ray diffraction</td>
<td>15</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Electron and Neutron diffraction</td>
<td>16</td>
</tr>
<tr>
<td>1.5.3</td>
<td>EXAFS (Extended X-ray absorption fine structure)</td>
<td>17</td>
</tr>
<tr>
<td>1.5.4</td>
<td>Infra-red and Raman spectra</td>
<td>18</td>
</tr>
<tr>
<td>1.5.5</td>
<td>Nuclear Magnetic Resonance (NMR)</td>
<td>18</td>
</tr>
<tr>
<td>1.5.6</td>
<td>Thermal effects</td>
<td>19</td>
</tr>
<tr>
<td>1.6</td>
<td>Methods of investigating defects in amorphous semiconductors</td>
<td>20</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Electron microscopy</td>
<td>20</td>
</tr>
<tr>
<td>1.6.2</td>
<td>Local chemical analysis</td>
<td>21</td>
</tr>
<tr>
<td>1.6.3</td>
<td>Infra-red dark field microscopy</td>
<td>21</td>
</tr>
<tr>
<td>1.6.4</td>
<td>Small angle scattering</td>
<td>21</td>
</tr>
<tr>
<td>1.6.5</td>
<td>ESR (Electron Spin Resonance)</td>
<td>22</td>
</tr>
<tr>
<td>1.7</td>
<td>Modelling of the ideal structure of amorphous element and binary alloys</td>
<td>22</td>
</tr>
<tr>
<td>1.8</td>
<td>Short range order in amorphous elements and alloys</td>
<td>25</td>
</tr>
</tbody>
</table>
Chemical effects in x-ray absorption spectra and object and scope of the problem 36

2.1 Introduction 36

2.1.1 Absorption of x-rays by free atom 36

2.1.2 Atoms in a solid 37

(i) Metals 37

(ii) Semiconductors 38

2.1.3 Chemical effects on x-ray absorption edge 38

2.2 Chemical shift and effective charges 40

2.3 Concept of electronegativity and effective charge 44

2.4 Object and scope of the present study 47

(i) Composition dependence of bonding in glassy Ge_{x}Se_{1-x} system 48

(ii) Composition dependence of bonding in Ge_{22}Se_{78-x}Bi_{x} system 49

(iii) Structural studies in Ge_{22}Se_{78-x}M_{x} system (M=Bi,Sb,Te) 50

(iv) Incorporation of third element in Se-Te glassy system 52

3

3.1 X-ray source and its white radiation 57

3.2 The x-ray spectrograph and recording the spectra 59

3.2.1 The x-ray spectrograph 59

3.2.2 Principle of the bent crystal spectrograph 61

3.2.3 Geometry of bent crystal spectrograph 63

3.2.4 Dispersion 65

3.2.4(a) Dispersion in the transmission method of Cauchois 66

3.2.4(b) Dispersion in the reflection method of Johann 67

3.2.5 On the error in focussing due to oblique planes 68

3.2.6 The bending mechanism 71

3.2.7 Choice of the mica crystal and its orientation 74
3.2.8 Mounting the crystal 76
3.2.9 Setting of the spectrograph 77
3.2.10 Focussing 78
3.2.11 Reducing the back ground 78
3.2.12 Optimum condition for setting the best spectra 79
3.2.12(a) High Tension 79
3.2.12(b) Thickness of the absorber 79
3.2.13 Absorption screens 80
3.2.14 Exposure and Development 82
3.2.15 Reference lines 83
3.3 Microphotometering of the spectrograms 83
3.4 Position and width of the absorption edge 83
3.5 Preparation of samples 84
4 Measured wavelengths of edges, their widths and an estimate of their shifts in some chalcogenide glasses 86
4.1 Composition dependence of bonding in glassy GeₙSe₁₋ₓ system 86
4.1.1 Introduction 86
4.1.2 Results and Discussions 89
4.1.2(a) Edge shifts 89
4.1.2(b) Principal absorption maxima 96
4.1.2(c) Edge width 98
4.2 Composition dependence of bonding in glassy Ge₂₂Se₇₈₋ₓBix system 105
4.2.1 Introduction 105
4.2.2 Results and discussion 109
4.2.2(a) Edge shifts 109
4.2.2(b) Principal absorption maximum 118
4.2.2(c) Edge width 119
4.3 Structural studies in glassy Ge₂₂Se₇₈₋ₓMₓ (M=Bi,Sb,Te) systems 124
4.3.1 Introduction 124
4.3.2 Results and discussions 128
4.3.2(a) Edge shifts
4.3.2(b) Principal absorption maximum and edge width
4.4 Incorporation of third element in Se-Te glassy system
4.4.1 Introduction
4.4.2 Results and discussion
4.4.2(a) Edge shifts
4.4.2(b) Principal absorption maximum
4.4.2(c) Edge width
5 Extended x-ray absorption fine structure studies (EXAFS)
5.1 Introduction
5.2 Theories of EXAFS
5.3 Present experiments and their results
5.4 Discussions
5.4.1 Lytle theory
5.4.2 Stern, Sayers and Lytle graphical method
6 Summary and Conclusions

Appendix - I Discrepancies in ΔL_{II-III} values calculated from different line pairs
Appendix - II EXAFS of hydrogenated cobalt and nickel Introduction Experimental Results and Discussions a) Cobalt b) Nickel
Appendix - III Co K-absorption edges in some double salts Introduction Experimental Results and Discussions