REFERENCES

10. Hland, D.R.
(1960) "The theory of linear viscoelasticity"
Fergunson Press, London.

11. Eogue, D.C.
(1959) "Entrance effects and prediction of
turbulence in non-Newtonian flow"
Ind. Engg. Chem., 51,
(874-880)

12. (1966) "An explicit constitutive equation
based on integral strain history"
I and EC Fundamentals, 5, (253-259)

13. Brinkman, A.
(1966) "Flow of Bingham material between
two parallel plates"

14. Campbell, W.D. and
Slattery, J.C.
(1963) "Flow in the entrance of a tube"
J. Basic Engg., Trans., ASME, 85,
(41-46)

15. Cebeci, T.,
Glauss, J.M. and
Dyer, J.
(1969) "On the solution of boundary layer
equations for a non-Newtonian power-
law fluid"

16. Checkover, I.B.
(1960) "Some problems of stationary flow of
a conducting liquid in an infinitely
long annular channel in the presence
of radial magnetic field"

17. Clegg, D.B. and
Power, G.
(1964) "The instantaneous slow flow of a
visco-elastic fluid between two
concentric spheres"

18. Collins, H. and
Schwalter, W.R.
(1963) "Behaviour of non-Newtonian fluids
in the inlet region of a channel".
A.I.Ch.E. Journal, 9, (98-102)

19. (1963) "Behaviour of non-Newtonian fluids
in the entry region of a pipe"
A.I.Ch.E. Journal 9, (304-309)

20. Collman, B.D. and
Noll, W.
(1961) "Foundations of linear viscoelasticity"
Rev. Mod. Phys., 33, (239-249)
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>22.</td>
<td></td>
<td>"Motion of power-law fluids in coaxial pipe due to the axial motion of the boundaries and an axial pressure gradient" Ladev, Journal of Sci. and Tech. India, 3, (172-179)</td>
</tr>
<tr>
<td>No.</td>
<td>Author(s)</td>
<td>Reference</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>34</td>
<td>Gulati, S.P.</td>
<td>"The flow of an elastico-viscous liquid between two electrically nonconducting infinite flat plates under a uniform transverse magnetic field" Jour. Phys. Soc. Japan, 21, (1411-1420)</td>
</tr>
<tr>
<td>35</td>
<td>Gupta, R.C.</td>
<td>"Flow development in the hydrodynamic entrance region of a flat duct" A.I.Ch.E. Journal, 11, (1149-1151)</td>
</tr>
<tr>
<td>36</td>
<td>(1969)</td>
<td>"Flow behaviour of power-law fluids in the entry region of a circular pipe" Journal de Mecanique, 8, (207-220)</td>
</tr>
<tr>
<td>37</td>
<td>Hanks, R.W.</td>
<td>"The laminar turbulent transition for fluids with yield stress" A.I.Ch. E. Journal, 9, (306-309)</td>
</tr>
</tbody>
</table>

44. Jones, R.S. (1967) "Flow of an elastico-viscous liquid in a corrugated pipe" Journal de Mecanique, 6, (443-448)

48. (1963) "Flow of power-law fluids past a flat plate with uniform suction and between two parallel plates with uniform suction and injection" Jour. Phys. Soc. Japan, 18, (578-582)
<table>
<thead>
<tr>
<th>No.</th>
<th>Authors</th>
<th>Year</th>
<th>Title and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.</td>
<td></td>
<td>(1964)</td>
<td>"Two dimensional flow of power law fluids in the inlet length of a straight channel II" Z.A.M.M., 44, (277-284)</td>
</tr>
<tr>
<td>56.</td>
<td></td>
<td>(1966)</td>
<td>"Kinetic energy and correction for the flow of non-Newtonian fluid in the inlet length of pipes and channels" The Mathematics Seminar, India, 3, (55-69)</td>
</tr>
</tbody>
</table>

60. (1963) "Tangential flow of a power law fluid in an annulus" Z.A.M.M., 43, (237-238)

<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>72.</td>
<td></td>
<td>Axially-symmetric stagnation point flow of power law fluid</td>
<td>Z.A.M.P., 16, (1965), (594-598)</td>
</tr>
<tr>
<td>74.</td>
<td>Metzner, A.B. and White, S.L.</td>
<td>Flow behaviour of viscoelastic fluid in the inlet length of a channel</td>
<td>A.I.Ch. E. Journal 11, (1965), (989-995)</td>
</tr>
<tr>
<td>75.</td>
<td>Michiyoshi, I., Misuno, K. and Hoahla, Y.</td>
<td>Studies on the flow of slurry through a pipe Entrance region of a laminar flow</td>
<td>Int. Chem. Engg., 6, (1966), (373-381)</td>
</tr>
<tr>
<td>No.</td>
<td>Author(s)</td>
<td>Title</td>
<td>Publication Details</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
<td>--</td>
<td>--------------------</td>
</tr>
<tr>
<td>78</td>
<td>Mishra, S.P.</td>
<td>"Inlet length by laminar flow of elastico-viscous liquid through straight channel and circular pipe"</td>
<td>Proc. Indian Acad. Sci., 64, (237-244)</td>
</tr>
<tr>
<td>79</td>
<td>Mishra, S.P. and Roy, J.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>"Steady laminar flow of elastico-viscous liquid through a pipe with suction and injection"</td>
<td>J. Appl. Phys., 38, (2072-2080)</td>
</tr>
<tr>
<td>81</td>
<td>Oldroyd, J.G.</td>
<td>"Laminar elastico-viscous flow in an annulus with porous walls"</td>
<td>Physics of fluids, 10, (2300-2304)</td>
</tr>
</tbody>
</table>
86. Oldroyd, J.G.
 (1948)
 "Rectilinear plastic flow of a
 Bingham solid IV: Non-steady
 motion"
 Proc. Camb. Phil. Soc., 44,
 (214-228)

87.
 (1949)
 "On the formulation of Rheological
 equations of state"
 Proc. Roy. Soc. (London), A, 200,
 (523-541)

88.
 (1951)
 "The motion of an elastico-
 viscous liquid contained between
 coaxial cylinders I"
 Quart. J. Mech. and Appl. Maths.,
 4, (271-282)

89.
 (1955)
 "The effect of interfacial stabilizing
 films on the elastic and viscous
 properties of emulsions"
 (567-577)

90.
 (1957)
 "Rheology of some two dimensional
 disperse systems"
 Proc. Camb. Phil Soc., 53,
 (514-524)

91.
 (1958)
 "Non-Newtonian effects in steady
 motion of some idealised elastico-
 viscous liquid"
 Proc. Roy. Soc. (London), A, 245,
 (278-297)

92.
 (1960)
 "Complicated Rheological properties
 of disperse systems"
 Pergamon Press

93.
 (1965)
 "Some steady flows of general
 elastico-viscous liquids"
 Proc. Roy. Soc. (London), A,
 263, (115-133)

94. Oldroyd, J.G.,
 Strawbridge, D.J.
 and Tom, B.A.
 (1951)
 "A coaxial cylindrical elastico-
 viscometer"
 Proc. Roy. Soc. (London), B,
 64, (44-57)
"Rotatory flow of viscoplastic material of Bingham type I-Flow between coaxial circular cylinders"

96. Powle, R.A. and Tien, C. (1964)
"Laminar heat transfer to non-Newtonian fluids in the entrance region of a circular conduit"

"Exact solution for the problem of unsteady temperature distribution in a viscous flow"

98. (1969)
"Laminar flow of an annulus with arbitrary time varying pressure gradient and arbitrary initial velocity"

99. Purohit, G.N. (1967)
"Temperature distribution in Couette flow between two parallel flat plates"

"Heat transfer for the flow of a power-law fluids in a curved pipe"

"Slow steady flow of an idealized elasto-viscous incompressible fluid of Oldroyd type through a straight tube with an arbitrary cross section"
Z.A.M.M., 47, (359-368)

102. (1967)
"Slow steady state flow of an idealized elasto-viscous incompressible fluid through a straight tube whose cross section is an equilateral triangle"
Indian Jour. pure and Appl. Phys. 5, (610-613)
103. Rao M. D.K.
 (1965) "Helical flow of a Bingham plastic"
 J. Indian Inst. Sci., 47, (97-100)

104. Ratnavat, H.P.
 (1968) "Unsteady flow of Bingham plastic
 between two eccentric circular cylinders"

105. Rivlin, R.S.
 (1956) "Solution of some problems in
 exact theory of viscoelasticity"

106. Rivlin, R.S. and
 Erickson, J.L.
 (1955) "Stress deformation relation for
 isotropic material"

107. Roy, J.C.
 (1967) "Steady motion of elasto-
 viscous liquid between two
 coaxial circular cylinders with
 suction and injection"

108. Sarpkaya, T.
 (1961) "Flow of non-Newtonian conducting
 fluids"
 A.I.Ch.E. Journal, 7, (324-328)

109. Schiller, L.
 (1922) "Die ent wicklung der laminaren
 Geschwindigkeit der teilung
 unter itre bedentung fur zahigkert
 messugen"
 Z.A.N.M., 2, (96-106)

110. Schlichting, H.
 (1960) "Boundary layer theory"
 Fourth edition, McGraw Hill
 Book Co. Inc. New York.

111. Sestak, J.
 (1967) "Heat transfer with laminar flow
 of viscoelastic fluids in pipes"

112. Shrestha, G.M.
 (1967) "Singular perturbation problems
 of laminar flow in a uniformly
 porous channel in the presence
 of a transverse magnetic field"
 Quart. J. Mech. and Appl. Maths.,
 20, (233-246)
<table>
<thead>
<tr>
<th>Reference</th>
<th>Author(s)</th>
<th>Title</th>
<th>Publication Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>114.</td>
<td>Siegel, R. and Sparrow, E.M.</td>
<td>Simultaneous development of velocity and temperature distribution in a flat duct with uniform wall heating</td>
<td>A.I.Ch. E. Journal, 5, (73-75)</td>
</tr>
<tr>
<td>118.</td>
<td>Srivastava, P.N.</td>
<td>On the unsteady flow of a viscous incompressible fluid in a pipe or a channel</td>
<td>The Mathematics Seminar, India, 3, (44-53)</td>
</tr>
<tr>
<td>120.</td>
<td></td>
<td>Propagation of small disturbances in a viscoelastic fluid contained in an infinite cylinder due to slow angular motion of its base</td>
<td>Indian Jour. Maths., 6, (29-53)</td>
</tr>
</tbody>
</table>

126. (1967) "Flow of a viscoelastic fluid in the entrance region of a straight channel" Indian Jour. Pure and Appl. Phys. 5, (243-245)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>136.</td>
<td>(1962)</td>
<td>"Non-Newtonian effects in some elasto-viscous liquids whose behaviour at small rates of shear is characterised by a general linear equation of State" Quart. J. Mech. and Appl. Maths., 15, (63-76)</td>
</tr>
<tr>
<td>137.</td>
<td>(1962)</td>
<td>"Flow problems in case of materials with memory" Jour. de Mecanique, 1, (47-56)</td>
</tr>
</tbody>
</table>
"A continuum theory of rheological phenomenon"
Nature, 159, (310-311)

139. White, F.M. (1962)
"Laminar flow in a uniformly porous tube"
J. Appl. Mech., 29, (201-204)

140. White, J.L. and Metzner, A.B. (1965)
"Constitutive equations for viscoelastic fluid for rapid external flows"
A.I.Ch.E. Journal, 11, (324-330)

141 (1965)
"Thermodynamic and heat transfer consideration for viscoelastic fluids"

142. Yau, J. and Zien, G. (1965)
"Simultaneous development of velocity and temperature profiles for laminar flow of a non-Newtonian fluid in the entrance region of flat ducts"

143. Zaremba, M. (1903)
Bull Acad. Cracois, 594.