PUBLISHED PAPERS
A New Subclass of Goodman-Ronning Type Harmonic Multivalent Functions

K. K. Dixita, A. L. Pathakb,1 and R. Tripathib

ABSTRACT

In the present paper, we introduce and study a new class of Goodman-Ronning type harmonic multivalent functions by using Salagean derivative. We determine coefficient estimates, extreme points, distortion bounds, convolution properties and convex combination for the above class of harmonic functions.

Keywords: Harmonic, Univalent, Starlike, Multivalent, Convex functions, Salagean derivative

1. Introduction

A continuous function $f = u + iv$ is defined in a domain $D \subseteq C$ is harmonic in D if u and v are real harmonic in D. In any simply connected subdomain of D, we can write $f = h + \bar{g}$, where h and g are analytic and we call h the analytic part of f and g the co-analytic part of f. The Jacobian of f is given by

$$J_f(z) = |h'(z)|^2 - |g'(z)|^2.$$

The mapping $z \rightarrow f(z)$ is locally one-one if $J_f(z) \neq 0$ in D. A result of Lewy [5] shows that the converse is true for harmonic mapping, and therefore f is locally one-one and sense-preserving if, and only if,

$$|g'(z)| < |h'(z)|.$$

We call such mappings locally univalent, and we say f is univalent in D if $z \rightarrow f(z)$ is one-one and sense-preserving in D.

Denote by S_H, the class of functions $f = h + \bar{g}$ that are harmonic univalent and sense-preserving in the unit disc $U = \{z : |z| < 1\}$ for which $h(0) = f(0) = f_z(0) - 1 = 0$. Then for $f = h + \bar{g} \in S_H$, we may express the analytic functions h and g as

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad g(z) = \sum_{n=1}^{\infty} b_n z^n, \quad |b_1| < 1.$$

Note that S_H reduces to the class of normalized analytic univalent functions if the co-analytic part of its members is zero.

In 1984, Clunie and Sheil-Small [2] investigated the class S_H as well its geometric subclasses and obtained some coefficient bounds. Since then, there have been several related papers on S_H and its sub-classes as Jahangiri et al. [4], Silverman [7], Silverman and Silvia [8] etc.

Recently, Rosy et al. [6], defined the subclass $G_H(\gamma) \subseteq S_H$ consisting of harmonic univalent functions $f(z)$ satisfying the following condition

$$\text{Re}\left\{ (1 + e^{i\alpha}) \frac{zf'(z)}{f(z)} - e^{i\alpha} \right\} \geq \gamma, \quad 0 \leq \gamma < 1, \quad \alpha \in R.$$

151
ON A NEW SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS DEFINED BY GENERALIZED SALAGANE OPERATOR

Saurabh Porwal¹, K. K. Dixit², A. L. Pathak³ and R. Tripathi⁴*

¹ Department of Mathematics, U.I.E.T. Campus, C.S.J.M. University, Kanpur-208024
² Department of Mathematics, Gwalior Institute of Information Technology, Gwalior-474015 (M.P.), India
³ Department of Mathematics, Brahmaand College, The Mall, Kanpur(U.P.), India

(Received on: 15-03-12; Accepted on: 18-05-12)

ABSTRACT

The purpose of the present paper is to study some results involving coefficient conditions, extreme points, distortion bounds, convolution conditions and convex combination for a new class of generalized Salagean-Type harmonic univalent functions in the open unit disc. Relevant connections of the results presented here with various known results are briefly indicated.

AMS 2010 Mathematics Subject Classification: 30C45, 30C50, 30C55.

Keywords and Phrases: Harmonic, Univalent functions, Convex and Starlike functions.

1. INTRODUCTION

A continuous complex-valued function $f = u + iv$ defined in a simply connected domain D is said to be harmonic in D if both u and v are real harmonic in D. In any simply connected domain we can write $f = h + g$, where h and g are analytic in D. We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and sense preserving in D is that

$$|h'(z)| > |g'(z)|, z \in D.$$

Let S_H denote the class of functions $f = h + g$ which are harmonic univalent and sense preserving in the open unit disc $U = \{z : |z| < 1\}$ for which $f(0) = f_z(0) = 0$. Then for $f = h + g \in S_H$ we may express the analytic functions h and g as

$$h(z) = z + \sum_{k=2}^{\infty} a_k z^k, g(z) = \sum_{k=1}^{\infty} b_k z^k, |b_k| < 1.$$ \hbox{(1.1)}

Clunie and Sheil-Small [3] investigated the class S_H as well as its geometric subclasses and established some coefficient bounds. Since then, there have been several related papers on S_H and its subclasses.

For $f = h + g$ given by (1.1), we defined the modified generalized Salagean operator of f as

$$D^\lambda_\mu f(z) = D^\lambda_\mu h(z) + (-1)^{1-\mu} D^\lambda_\mu g(z), \quad (m \in N_0, N_0 \equiv N \cup \{0\}, 0 \leq \lambda \leq 1)$$ \hbox{(1.2)}

where

$$D^\lambda_\mu h(z) = z + \sum_{k=2}^{\infty} [(k-1)\lambda+1]^\mu a_k z^k$$

Corresponding author: R. Tripathi**

Department of Mathematics, Brahmaand College, The Mall, Kanpur(U.P.), India
International Journal of Mathematical Archive- 3 (7), July- 2012

Rohit Tripathi

Rohit Tripathi

A. Pathak