CONTENTS

CHAPTER I

1. Introduction:
 1.1 Spectroscopic tools
 1.2 Optical studies
 1.2.1 Studies in Tutton salts
 1.3 EPR studies
 1.3.1 Low-symmetry hosts
 1.4 Proposed work

References

CHAPTER II

2. Crystals data of Tutton salts
 2.1 Crystal structure
 2.1.1 MASH Tutton salts
 2.1.1.1 The sulphate ion
 2.1.1.2 The hydrated magnesium ion
 2.1.1.3 Hydrogen bonding
 2.1.2 ZPSH Tutton salt
 2.1.3 Shape and size of water octahedron
 2.2 Morphology
 2.3 Optics of crystals

References

CHAPTER III

3. Theoretical details
 3.1 Optical absorption of transition metal ions
 3.1.1 Free ion energy levels
 3.1.2 The energy levels in octahedral field

References
3.1.1 Spin-orbit interaction
3.1.4 Mechanism of electronic transition
3.1.5 Width of absorption bands
3.1.6 Low symmetry effects
3.2 The EPR spectrum
3.2.1 Experimental observation of EPR
3.2.2 Crystal-Field effect
3.2.3 Zero-field splitting of Mn$^{2+}$ ion
3.2.4 Field expressions in EPR of Mn$^{2+}$ doped Tutton salts
References

CHAPTER - IV
4. Experimental details
4.1 Growth of crystals
4.2 Spectral measurements
4.3 Crystal holder

CHAPTER - V
5. Role of optic axis in spectral studies
5.1 Propagation of light in a bi-axial crystal
5.1.1 Overlap of split beams
5.2 Crystal-field modulations for the doped ion
5.3 Uniqueness of optic-axis
5.4 Absence of distortion effect in cubic crystals
5.5 Experimental proof
References

CHAPTER - VI
6. Optical absorption of Co$^{2+}$-doped MASH 82 and ZASH Tutton salt crystals
References
CHAPTER - VII
7. Optical absorption of Co$^{2+}$ ions doped in Potassium Tutton salts single crystals
 7.1 Introduction
 7.2 Experimental
 7.3 Results and discussion
 7.4 Conclusion
 References

CHAPTER - VIII
8. Correlation of optical, EPR data
 Reference

§§§§§