CHAPTER – V
SUMMARY OF FINDINGS, SUGGESTIONS
AND CONCLUSION
CHAPTER - V
SUMMARY OF THE FINDINGS, SUGGESTIONS
AND CONCLUSION

5.1 Summary of findings

This study was taken up with an intention of understanding the knowledge sharing behaviour of medical practitioners. The data was collected from 600 medical practitioners of 12 medical institutions in Bangalore. The data was analysed at two different levels. A macro analysis was attempted to understand the knowledge sharing with respect to the demographics – such as gender, age, qualification, experience and domain. A detailed microanalysis was made for analysis knowledge sharing as observed in the organizational structure for the six categories – Prof., AssoP, AsstP/L, T, SR, and JR. For both micro and macro analysis, the same set of 55 survey items were used. The survey items are the statements on which the opinions of the respondents were sought. These survey items are considered as the dependent variables. The survey items are based on the psychological model TRA/TPB. The 55 survey items referred to in the findings are given in Chapter 4 under the nine independent variables. The major findings of both are given below in a succinct manner which are derived from the discussions in Chapter 4 of this thesis.

The following are the general characteristics of the demographic variables considered in the study.

Gender: There were 235 (39.17%) male respondents, and 365 (60.83%) female respondents participated in the study.

Age: The age of the respondents was categorized into four groups for the purpose of analysis. The groups were 21-30 years (174 respondents, 28.67%), 31-40 (185 respondents, 30%), 41-50 years (154 respondents, 24.5%), and more than 50 years (87 respondents, 14.5%).
Qualification: Two categories, representing under graduation (247 respondents, 41.17%) and post-graduation (353 respondents, 58.83%), were formed for the analysis.

Experience: There were two categories. The first category includes respondents with less than or equal to 15 years (≤15) (426 respondents, 71%) and the other group had respondents with more than 15 years (174 respondents, 21%).

Domain: Three categories considered under this domain variable are pre-clinical (225 respondents, 37.50%), para-clinical (165 respondents, 27.50%) and clinical (210 respondents, 35.01%).

The findings of the study from the analysis are summarized below.

5.1.1 Knowledge sharing and Demographics (Part A)

I. Supportive management and knowledge sharing (SMK)

Gender

1. 30.66% of male respondents and 42.84% of female respondents had shown their agreement that there exists a policy for knowledge sharing in their organisations (SMK1). 43.67% of female and 31% of male respondents ‘strongly agree' and ‘agree' that the hierarchical structure supports knowledge sharing (SMK2).

2. 28.17% of male and 42.34% of female respondents ‘agreed’ that the institute has a mechanism to minimize the loss of knowledge due to retirement/resignation of experienced staff (SMK3).

Age

3. 14.33% and 10.17% of respondents with the age group 21-30 ‘strongly agreed’ and ‘agreed’ respectively for the survey item SMK1.
4. 13.50% and 12.67% of respondents with age group 31-40 have ‘strongly agreed’ and ‘agreed’ for the survey item SMK1. 76 (12.67%) and 51 (8.50%) respondents belonging to age group 41-50 ‘strongly agreed’ and ‘agreed’ respectively for survey item SMK1.

5. 6.83% and 4.33% of respondents aged more than 50 years have ‘strongly agreed’ and ‘agreed’ for survey item SMK2.

Qualification

6. 19.17% and 18.17% of respondents, having MBBS degree only, have ‘strongly agreed’ and ‘agreed’ that the hierarchical structure supports the knowledge sharing activities (SMK2).

7. 41.66% of respondents, to the varied degree of agreement, support the statement made in survey item (SMK1). 17.67% of respondents ‘undecided’ on for the survey item SMK2 which calls for their opinion on whether the organizational structure (hierarchy) helps the knowledge sharing.

Experience

8. 28.17% and 27.83% of respondents with working experience of ≤15 years ‘strongly agreed’ and ‘agreed’ for survey item SMK1 respectively. In all 56% recorded their agreement to SMK1.

9. 13.67% and 8.67% of respondents with working experience more than 15 years have ‘strongly agreed’ and ‘agreed’, for survey item SMK3.

10. 14.67% of respondents with less than 16 years of experience have not expressed their opinion for survey item SMK3 and opted to give the response as ‘undecided’.

Domain

11. 20.83% of respondents belonging to pre-clinical domain ‘strongly agreed’ and 14.50% of respondents belonging to pre-clinical domain ‘agreed’ for the survey item SMK1. On the other hand, 13% and 8.50% of para-clinical respondents have ‘strongly agreed’ and ‘agreed’ respectively for the survey item SMK3. 23.17% and 9.17% of respondents from clinical domain have recorded their opinion as ‘strongly agreed’ and ‘agreed’ respectively for the survey item SMK1.
II. Knowledge sharing culture (KSC)

Gender

12. 16.83% and 17.17% of male respondents ‘strongly agreed’ and ‘agreed’ for the survey item KSC4 respectively and thereby accepting that the essential knowledge required by them for their work was readily available for their use. The survey item KSC5 sought the opinion on sharing of knowledge related to work issues. 26.17% of female respondents ‘strongly agreed’ and 20.67% of female respondents ‘agreed’ for survey item KSC5. 15.83% of female respondents had ‘undecided’ for survey item KSC2, and 5.83% of female respondents have ‘disagreed’ for survey item KSC6.

Age

13. 16% and 8.83% of respondents within the age group 21-30 have ‘strongly agreed' and ‘agreed' respectively for survey item KSC4. Respondents with the age group 31-40 have shown the varied degree of agreement to the survey item KSC6, 14.83% have ‘strongly agreed’ and 10.33% of respondents have ‘agreed’. For survey item KSC3, 13.5% and 6.83% of respondents from the age group 41-50 have ‘strongly agreed’ and ‘agreed’ respectively. As far as respondents aged more than 50 years are concerned, the ‘strongly agreed’ and ‘agreed’ percentage for survey item KSC1 were found to be 5.33% (32 respondents) and 6% (36 respondents) respectively.

Qualification

14. 17.17% and 15.33% of respondents, who have only under graduation, have ‘strongly agreed’ and ‘agreed’ respectively for survey item KSC1. It is also observed 21% and 20.67% of respondents possessing postgraduate have ‘strongly agreed' and ‘agreed' for survey item KSC6 respectively. 21.17% of respondents with postgraduate qualification have ‘undecided' for survey item KSC3.

Experience

15. 31.33% ‘strongly agree’ and 24.33% ‘agree’ for survey item KSC7 from respondents with experience ≤15 years. Of the respondents with >15 years’ experience, 14.5% of respondents ‘strongly agreed’ and 14.5% ‘agreed’ for survey item KSC1.
Domain

16. 27.50% of respondents from clinical domain have ‘agreed’ for survey item (KSC4). 27% of pre-clinical, 22% of para-clinical and 23.5% of clinical respondents have ‘agreed’ for survey item KSC5. 21% of pre-clinical respondents and 17.33% of para-clinical respondents ‘agreed’ for survey item KSC6. 31.16% of respondents from a clinical domain, 24.17% of respondents from the pre-clinical domain, and 17.5% of respondents from para-clinical domain agreed for survey item KSC7.

III. Infrastructure for knowledge sharing

Gender

17. 30.67% of male respondents ‘agreed’ for the survey item IKS1. 42.34% of female respondents agreed for survey item IKS2.

Qualification

18. 32.16% of respondents with a graduate degree and 40.5% of respondents with postgraduate degree have accepted the survey item IKS1, to the varied degree of agreement. 29.17% of respondents with a graduate degree had ‘agreed’ for survey item IKS3.

Age

19. In the age group 21-30 years, 25.5% of respondents have ‘agreed’, to the varied degree, for survey item IKS4. 20.83% of respondents from age group 31-40 have ‘agreed’ for IKS3. 21.5% of respondents from age group 41-50 have also ‘agreed’ for IKS2. 8.83% of respondents with more than fifty years (>50) have positively accepted the statement in the survey item IKS1.

Experience

20. 51% of respondents with ≤15 years’ experience have accepted the survey item IKS4. 25.17% of respondents having >15 years of experience have expressed their consent for the survey item IKS2.

Domain

21. 27.33% of respondents from the pre-clinical domain and 32.83% of respondents from clinical domain were positive in their opinion to the
statement in survey item IKS1. 27% of respondents from the pre-clinical domain and 12.5% of clinical practitioners have shown agreement for the survey item IKS3. 31.5% of clinical practitioners, 24.67% of pre-clinical, and 22.16% of para-clinical have shown their agreement for survey item IKS4.

IV. Access the information places other than library

Gender

22. 45.84% of female respondents and only 27.5% of male practitioners expressed that they access information from IT laboratory (AIL1). 43.67% of female respondents and 34.83% of male respondents agreed for survey item AIL2. Female respondents (44.84%) were more in number to agree with AIL3 than their male counterparts (29.5%) for survey item AIL3.

Age

23. 15.17% and 11.33% of respondents from age group 21-30 have ‘strongly agreed’ and ‘agreed’ respectively for survey item AIL3. In the age group 31-40, 16.33% and 8.50% of respondents have ‘strongly agreed’ and ‘agreed’ for survey item AIL1 respectively.

Qualification

24. 41.66% of post-graduate practitioners have opined that they access information from their IT laboratory (AIL1). 36.83% of practitioners with MBBS degree opined that they depend on IT laboratory (AIL1). 40.66% of respondents with post-graduation agreed for survey item AIL3.

Experience

25. 21% of respondents with>15 years' work experience accept the survey item AIL1. Whereas 18.84% of respondents accepted the statement AIL2, 17.67% of respondents accepted the survey item AIL3.

Domain

26. 33.83%, 21.83% and 32% of respondents from a different domain like pre-clinical, para-clinical and clinical have ‘strongly agreed’ for survey item AIL1 respectively. 33.34% of respondents from pre-clinical have ‘strongly agreed’ for AIL2 indicating that they use their own internet connectivity for their
information searching activity. 32.16% of respondents from pre-clinical are more in number to agree with survey item AIL3 than other domains.

V. Tools and technology in knowledge sharing

Gender

27. 14.50% of male respondents and 23.67% of female respondents use ‘very frequently’ the face-to-face interaction (TKS1). 10.33% of male respondents and 16.17% of female respondents did not use the face-to-face interaction for knowledge sharing, which is a bit surprising result.

28. 4.83% of male respondents and 28.17% of female respondents use emails ‘very frequently’ as the knowledge sharing activity (TKS2). 9.33% of male and 10.50% of female respondents have opined that they did not use e-mails for knowledge sharing.

29. 12.33% of male respondents and 27% of female respondents used ‘very frequently’ for survey item TKS3. 12% of male and 10% of female respondents have told ‘not at all’ for survey item TKS3.

30. 13.50% of male respondents and 26.33% of female respondents have opined that they use intranet ‘very frequently’ (TKS4). One can also observe that 9.33% of male and 12.17% of female respondents did not use intranet at all.

31. 17.25% of male respondents and 21.17% of female respondents opined that they use technologies like mobile apps, instant messaging, etc., ‘very frequently’ (TKS5). On the other hand, 8.17% of male and 19.50% of female respondents did not use those technologies at all.

32. The survey item TKS6 was asked to find out the respondents use of discussion forum, a community of practice (COP), etc. It was found that these were used ‘very frequently' by 12% of male respondents and 16.83% of female respondents. 12.33% of male and 21.50% of female respondents did not use them at all.

33. For survey item TKS7, 7.5% and 13.50% of male respondents opined they used computer conferencing ‘very frequently' and ‘frequently' respectively. On the other hand, 19.50% and 17.25% of female respondents opined that their usage was ‘very frequent' and ‘frequent’ respectively. 14.50% of male and 19.83% of female respondents did not use the computer conferencing.
34. 13.5% and 14.00% of male respondents opined that workshops, seminars, etc., were used ‘very frequently’ and ‘frequently’ respectively by them (TKS8). Similarly, 19.33% and 20.67% of female respondents opined ‘very frequently’ and ‘frequently’ respectively for survey item TKS8 respectively. 9% male and 18.67% of female respondents have told ‘not at all’ for survey item TKS8.

35. 10.67% and 12.33% of male respondents used ‘very frequently’ and ‘frequently’ for survey item TKS9 respectively. 16.83% and 19.83% of female respondents used ‘very frequently’ and ‘frequently’ respectively for survey item TKS9. 13.17% of male and 19.33% of female respondents have told ‘not at all’ for survey item TKS9.

36. 14.00% and 12.33% of male respondents used ‘very frequently’ and ‘frequently’ for survey item TKS10 respectively. 21.17% and 19.00% of female respondents used ‘very frequently’ and ‘frequently’ respectively for survey item TKS10. 11.33% of male and 17.25% of female respondents have told ‘not at all’ for survey item TKS10.

37. 14.83% of male respondents opined ‘very frequently’ for survey item TKS11. 19.83% of female respondents opined ‘very frequently’ for survey item TKS11. 8.00% of male and 19.33% of female respondents have told ‘not at all’ there is duty rotation in the department.

38. 13.17% of male respondents, 19.50% of female respondents opined ‘very frequently’ for survey item TKS12. Here one can also observe that 8.50% of male and 16.17% of female respondents have told ‘not at all’ for survey item TKS12.

Qualification

39. 19% and 14.67% of MBBS qualified practitioners expressed they consult face-to-face ‘very frequently’ and ‘frequently’ respectively (TKS1). 17.33% and 7.83% of MBBS qualified practitioners expressed they use e-mail ‘very frequently’ and ‘frequently’ respectively for survey item TKS2. 17.67% and 7.33% of undergraduate respondents use specialist chat room ‘very frequently’ and ‘frequently’ for survey item TKS3 respectively.
22.33% and 17% of post-graduate practitioners respondents used ‘very frequently’ and ‘frequently’ the survey item TKS12 respectively.

21.33% and 19.50% of post-graduate practitioners use ‘very frequently’ and ‘frequently’ for survey item TKS5.

Age

The 16.33% of practitioners belong to age group 21-30 have expressed ‘very frequently' for survey item TKS4, 12.67% of respondents ‘frequently’ use meeting (TKS9) and 12.67% of respondents ‘frequently’ for survey item TKS10.

The 12% of practitioners with age group 31-40 have expressed they discuss face-to-face (TKS1) ‘very frequently’ to share knowledge. 13.50% of respondents use ‘frequently’ for survey item TKS1.

The 13.17% of practitioners from age group 41-50 have expressed they prefer discussion forums and communities of practice (TKS6) to share knowledge ‘very frequently’. 9.33% of respondents ‘frequently' prefer Specialist chat rooms (TKS3) for the exchange of knowledge.

The 8.3% of practitioners with age group >50 have expressed ‘very frequently’ they depend upon E-mail (TKS2) to share knowledge. 4.83% of respondents ‘frequently’ for survey item (TKS8) and 4.83% of respondents publish their work (TKS10) as part of knowledge exchange.

Experience

29.83% and 27.33% of respondents with less experience attended brainstorming session, meeting (TKS9) ‘very frequently’ and ‘frequently’ respectively. 25.17% and 25.50% of respondents ‘very frequently’ and ‘frequently’ visit specialist chat room (TKS3) respectively.

Domain

The 17.83% of practitioners belonging to pre-clinical domain use ‘very frequently’ to share knowledge like mobile apps, instant messaging (TKS5). 17.17% of respondents ‘very frequently’ follow Discussion forum, communities of practice. 17% of respondents take advantage of specialist chat (TKS3) room ‘very frequently’.
48. The 16.33% of practitioners belonging to para-clinical domain use 'very frequently' to share knowledge like a specialist chat room (TKS3), 16.17% of respondents ‘very frequently’ use computer conferencing (TKS7), 13.00% of respondents ‘very frequently' go to workshops, seminars and training (TKS8).

49. The 16.33% of practitioners belonging to clinical domain ‘very frequently’ share knowledge for survey item TKS1, 16.17% of respondents used ‘very frequently’ discussion forums, communities of practice (TKS6). 16.17% of respondents ‘very frequently' go to fairs and expos (TKS12).

VI. Attitude towards knowledge sharing

Gender

50. 40.67% of female respondents agreed for AKS5 and thus showing their apprehension about knowledge sharing, 40.17% of respondents agreed for survey item AKS1 which shows that they emphasize the importance of knowledge sharing in teaching and research. 40% of female respondents approved for survey item AKS2 which asks about the positive impact of knowledge sharing on the creation of new knowledge.

51. 29.17% of male practitioners agreed for survey item AKS1. 27.33% of male respondents showed their apprehension about the misuse of knowledge by agreeing with AKS3. 26.34% of male respondents ‘agreed' for survey item AKS5 which negates the knowledge creation promotes the creation of new knowledge.

Age

52. 24.83%, 25.83% and 21.5% of respondents agreed for the survey item AKS3 with the age group falling under the categories 21-30, 31-40 and 41-50 respectively

Qualification

53. 40.67% of respondents with post-graduation agreed for survey item AKS3 who are more in numbers than the other category. 29.34% of respondents with under graduation degree also agree for AKS3. 24.67% of respondents with MBBS degree and 39.33 of post-graduation generally possessed a positive opinion for survey item AKS4
54. 23.5% of practitioners under graduation degree only and 40.50% of respondents with post-graduation feel that knowledge sharing does not have any effect on generating of new ideas (AKS5).

Experience

55. 24.83% of respondents with less experience know the importance of knowledge sharing (AKS4). This finding is relatively larger compared to study findings from Ethiopia (Asemahagn, 2014). 26.50% of respondents strongly agreed for survey item AKS2.

56. 12.67% of respondents with experience >15 years approved for survey item AKS3. At the same time, 25.33% of less experienced respondents accepted that the sharing of knowledge does not generate any new ideas (AKS5).

Domain

57. 16.17% and 12.67% of respondents from pre-clinical domain ‘strongly agreed’ and ‘agreed’ respectively for survey AKS2 respectively. 15.33% and 10.17% of respondents from para-clinical domain have ‘strongly agreed’ and ‘agreed’ respectively for survey item AKS1. 24.50% and 8.50% of respondents belonging to clinical domain ‘strongly agreed’ and ‘agreed’ respectively for survey AKS1.

VII. Personal factors for knowledge sharing

Gender

58. 20.50% of female respondents ‘strongly agreed’ for survey item PKS1 and 21% of female respondents ‘strongly agreed’ for survey item PKS2. Both PKS1 and PKS2 relates to the trust factor in knowledge sharing. 14.83% and 14.17% of male respondents ‘strongly agreed’ and ‘agreed’ for survey item PKS1.

Age

59. The age group from 41-50, 15.50% of respondents have shown strong agreement for the survey item PKS1. 15.33% of respondents each from age groups 21-30 and 41-50 have ‘strongly agreed’ for survey item PKS3. 6.83% and 5.17% of respondents from age group more than 50 years have ‘strongly agreed’ and ‘agreed’ for survey item PKS5.
Qualification

60. 14.50% and 13.50% of respondents with MBBS degree qualification have ‘strongly agreed’ and ‘agreed’ for survey item PKS1. 19.83% of respondents holding post-graduation ‘strongly agreed’ that trust is important (PKS1) and knowledge sharing reduces competitiveness (PKS3)

Experience

61. Respondents with work experience ≤15 years are more in number to agree with all the five survey items. 27% trusted on colleagues' knowledge, 27.83% of respondents felt that intrinsic and extrinsic motivation is important (PKS5).

Domain

62. 17.17% of respondents belonging to pre- clinical domain ‘strongly agreed’ for survey item PKS2. 12.33% and 9.50% of respondents belonging to para-clinical domain have ‘strongly agreed’ and ‘agreed’ for survey item PKS3 respectively. 16.33% and 14.17% of respondents from clinical domain have ‘strongly agreed’ and ‘agreed’ for survey item PKS2 respectively.

VIII. Benefits of knowledge sharing

Gender

63. 15.33% of male respondents have ‘strongly agreed’ for survey item BKS4, at the same time 8.67% of male respondents ‘undecided’ for survey item BKS4. The researcher also identified 23% of female respondents strongly feel that sharing of knowledge helps in problem-solving with reusable experience (BKS11).

Age

64. 14.83% of respondents from the age group 31-40 expressed ‘strong agreement’ for BKS2 and BKS5. 10.33% of respondents from 41-50 age recorded their opinion as ‘undecided’ for survey item BKS1. The 8.67% of respondents from age group >50 have ‘strongly agreed’ for survey item BKS3.

Qualification

65. Respondents with MBBS qualification have ‘strongly agreed’ for BKS1 and BKS2 with response scores of 22% and 16.83% respectively. 20.67% and
20.50% of respondents with post-graduation have shown their agreement for survey item BKS3.

Experience

66. 27.50% and 25.17% of respondents having ≤15 years of work experience have ‘strongly agreed’ and ‘agreed’ for survey item BKS1. 13.17% of respondents having >15 years' experience have ‘strongly agreed' for survey item BKS10. 14.17% of practitioners with more experience have ‘agreed’ for survey item BKS1.

Domain

67. 17% of respondents belonging to pre-clinical domain expressed ‘strong agreement’ for the survey item BSK4. The 16.33% of respondents belonging to para-clinical domain ‘strongly agree’ for survey item BKS3. The 16.50% of respondents belonging to clinical domain ‘strongly agree’ for survey item BSK2.

IX. Barriers towards successful knowledge sharing

Gender

68. The female respondents ‘strongly agreed' for all the barriers listed as SKS1, SKS2, SKS3, SKS5 and SKS6 with the scores of 23.67%, 23.67%, 24.17%, 21.83% and 24.17% respectively. Surprisingly, their counterparts, the male respondents, have the lesser intention to strongly agree with these items.

Age

69. 15.83% of practitioners belonging to 31-40 age group ‘strongly agreed’ for survey item SKS1. 16% of respondents from 31-40 age group ‘strongly agree’ for SKS2. One can also observe that 15.33% of respondents from 41-50 age group have ‘strongly agreed’ for SKS2. 7% of respondents from age group more than 50 years have ‘strongly agreed’ for survey item SKS4.

Qualification

70. 20.67% of respondents with a post-graduate degree are more in number to show agreement for survey item SKS1 than those having only undergraduate degree. 19.83% of respondents with the post-graduate qualification ‘strongly
agreed' for survey item SKS5. 16.50% of respondents with degree qualification ‘strongly agreed’ for survey item SKS2.

Experience

71. 27.83% of practitioners with less experience ‘strongly agreed’ to survey item SKS1. 13.67% of practitioners with more experience have ‘strongly agreed’ for two survey items SKS2 and SKS4.

Domain

72. 16.33% of pre-clinical respondents ‘strongly agreed’ for survey item SKS1. 12.33% of para-clinical respondents ‘strongly agreed’ for survey item SKS2. 25.33% of respondents from clinical domain ‘ strongly agreed’ for survey item SKS1

5.1.2 Knowledge sharing and organizational structure (Part B)

The following are the findings of the microanalysis which have been discussed in Part B of Chapter 4. Only the summary of findings is given below.

I. Supportive management and knowledge sharing (SMK)

1. 258 (43%) respondents were in strong agreement with the statement SMK1 which states that there are policies in the medical institutions which support knowledge sharing. The significant number of respondents (438, 73%) have given a positive opinion by agreeing on the survey item SMK1. The values for the mean, standard deviation and p-value were found to be 4.382, 0.0039 and 0.0013.

2. 241 (40.17%) respondents ‘strongly agree' that the organizational structure in their institute was favourable for knowledge sharing. 436 (72.67%) of the total respondents opined that knowledge sharing was supported by the organizational structure. 70 (11.66%) respondents disagreed to the survey item SMK2. Statistically 4.111, 0.7964 and 0.0107 were the values calculated for mean, standard deviation and p-value.

3. 467 (71.17%) respondents believe that the institute has a mechanism to minimize the loss of knowledge due to retirement/resignation of experienced staff. The calculated values for mean was 4.316, the standard deviation was 0.9112 and p-value was 0.0119.
The p-value for all the survey items SMK1, SMK2 and SMK3 are less than 0.05 for all the three cases and the values showed that there exists a significant difference in each case. Hence, one can infer that there was statistical evidence to accept the null hypothesis (H₀) for all the three survey items, viz., SMK1, SMK2 and SMK3. On the whole, as per the p-values one infer that the six categories of respondents didn’t differ in their opinion for all the three survey items and hence, there is statistical evidence to accept the null hypothesis formulated for Hypothesis 1.

II. Knowledge sharing culture (KSC)

4. 436 (72.67%) of the total population of the study believed that their colleagues share knowledge in their departments. 250 (39.67%) respondents were in strong agreement; thereby they believed that knowledge sharing happened between them at a good level (KSC1). The estimation of mean, standard deviation and the p-value was found to be 4.421, 0.185 and 0.0022 respectively.

5. 436 (72.67%) medical practitioners showed a consensus on the knowledge sharing culture (KSC2). Only 74 (12.34%) of the respondents disagreed with the statement. Interestingly, the significant number of the respondents (90, 15%) were in the ‘sit on the fence’ situation undecided about knowledge sharing culture in the work situation. The data had a mean score of 4.211, the standard deviation of 0.062 and p-value of 0.0251.

6. 444 (74%) respondents believed that their colleagues, particularly experienced, are repositories of knowledge in their own rights. This result showed that the respondents believed that there exists a hoarding of knowledge. The scores for mean, standard deviation and p-values were calculated and found to be 4.673, 0.434 and p-value 0.0191 respectively.

7. 463 (77.16%) respondents opined that there was the availability of information in the respective departments, which they can use for their academic work. Only 11.83% of respondents opined that they were unaware or not sure about the availability of information in the department (KSC4). The values 4.835, 0.917 and 0.0121 were the values the mean, standard deviation and p-value respectively for the data KSC4.
8. 153 (15.50%) of respondents ‘disagreed’ and ‘strongly disagreed’ and 80 (13.33%) were ‘undecided’ for survey item KSC5. 427 (71.17%) respondents have given a varied degree of agreement for survey item KSC5. The mean score for KSC5 is 4.677, the standard deviation is 0.022 and p-value is 0.0222.

9. 264 (44%) respondents ‘strongly agreed' and 182 (30.33%) ‘agreed' that medical practitioners recorded their daily academic activities for future use (KSC6). The mean value was 4.925; standard deviation was 0.313 and p-value was 0.0402.

10. 251 (41.83%) respondents ‘strongly agree’ that the recording of minutes is practiced in their institutions as one of the knowledge sharing activities. It is surprising to notice that 94 (15.67%) respondents were neutral (undecided) in their response. 78 (13%) respondents didn’t even know that minutes were being recorded (KSC7), which is a surprising element. 4.272, 0.897 and 0.1602 were the values for mean, standard deviation and p-value.

The p-value for all the survey items KSC1 to KSC6 were less than 0.05 for all the six survey items. This showed that there was no significant difference in the responses to the survey items in each case. On the contrary, for the survey item KSC7, the p-value was more than 0.05 and hence, there was no statistical evidence to accept the null hypothesis. Hence, on the whole, as far as Hypothesis 2 of this thesis is concerned, one can conclude that there was no statistical evidence to accept the null hypothesis (H₀) and hence, the alternate hypothesis (H₁) is accepted.

III. Infrastructure for knowledge sharing (IKS)

11. 423 (70.5%) respondents have agreed that adequate ICT infrastructure was available in their institutions. The mean, standard deviation and p-value for survey item were found to be 4.213, 0.135 and 0.0519 respectively.

12. 442 (73.67%) respondents have accepted that they have adequately equipped to support information searching and sharing. The calculated mean, standard deviation and p-value score were 4.097, 0.2838 and 0.0430 respectively for survey item (IKS2).

13. 431 (71.84%) respondents agreed that they had access to Internet connectivity in OPDs and faculty rooms. The mean score for survey item IKS3 was 4.526,
and the standard deviation value and p-value were 0.325 and 0.0003 respectively.

14. 436 (77.16%) respondents were satisfied with the Internet connectivity speed provided in their organization. For the survey item IKS 4, the mean was 4.092, the standard deviation was 0.229 and p-value was 0.0103.

The p-values for all the survey items (IKS1, IKS2 and IKS3) were less than 0.05 in each case and thus statistically there exists a significant difference among them. Hence, there is no evidence to accept the null hypothesis for each of them. In other words, the six categories of respondents differ in their opinion for all the three survey items. From these results, there is no statistical evidence to accept the null hypothesis (H₀) for the Hypothesis 3, and thus the alternate hypothesis is accepted.

IV. Access the information from places other than the library (AIL)

15. 426 (71%) respondents have said that they used IT laboratory of the organization. It may be noted that 96 (16%) of the respondents do not use the facilities available at the IT laboratory provided for them. Among those using the laboratory, AsstP/L (17.5%) and AssoP (16.83%) ranked highest in the usage. Mean score for survey item AIL1 was 4.423, the standard deviation was 0.185 and p-value was 0.0519.

16. 416 (69.33%) respondents preferred to use IT facility of the department of which 102 (17%) of respondents were from the category ‘AsstP/L’. The percentage of respondents who do not prefer to use IT facility at their departments was 103 (17.17%) and those who did not wish to give their opinion on the issue was 81 (13.50%). The scores of mean, standard deviation and p-value for AIL2 were 4.465, 0.829 and 0.0022 respectively.

17. 420 (70%) respondents had their own Internet connectivity and used them for the academic purposes also. The category wise distribution shows that AssoP 125 (20.83%) and AsstP/L 149 (24.83%) used their own Internet connectivity more than others. Mean score for survey item AIL3 was 4.592; standard deviation was 0.943, and the p-value was 0.0019.
The p-value for the survey item AIL1 is more than 0.05 and there was statistical evidence to claim that there was no significant difference among the six categories. On the other hand, the p-values for AIL2 and AIL3 are less than 0.05 which shows that there exists a significant difference in their opinion among the six categories. On the whole, as far as Hypothesis 4 was concerned, the null hypothesis (H₀) was rejected and the alternate hypothesis (H₁) was accepted.

V. Tools and technology in knowledge sharing (TKS)

18. 244 (40.67%) respondents used face-to-face interaction very frequently and 191 (31.83%) respondents used it frequently. It was quite surprising that 78 (13%) respondents didn't use face-to-face interaction for their information needs. The mean for survey item TKS1 was 4.317; standard deviation was 0.0011, and the p-value was 0.1012.

19. 244 (40.67%) respondents used email ‘very frequently’ for knowledge sharing activities, whereas 206 (34.33%) respondents claimed that their usage was little lesser. It was observed that 1/4th of the respondents have either used emails rarely or didn’t use at all emails for the knowledge sharing activity. As far as TKS2 is concerned, the calculated scores for mean, standard deviation and the p-value were 4.126, 0.7124 and 0.0107.

20. More than 3/4th (461, 75.5%) of the respondents made use of the experience and knowledge of other locally available specialists frequently. 73 (12.17%) respondents did not use the services of the specialists for the reasons that could not be ascertained in this study. For TKS3, 4.414, 0.9018 and 0.0155 were the scores for mean, standard deviation and the p-value respectively.

21. 281 (46.83%) respondents used intranet of their organizations very frequently and 180 (30%) of them use frequently. In all, 76.83% used the facility of intranet for knowledge sharing. The facility is given by organization for sharing of knowledge within the campus to make their job easy but still they are not motivated to use the given intranet facility. The mean for survey item TKS4 is 4.305, SD 0.1031 and p-value 0.1012.

22. 278 (46.33%) respondents claimed that they used mobile apps, instant messaging, etc for knowledge sharing purposes. The JR category (17 respondents, 2.83%) of this study showed reluctance in using these
technologies for knowledge sharing, which was bit surprising taking into consideration their age factor. As observed in earlier cases, JRs hesitated to communicate through these technologies and preferred to have face-to-face interaction. The mean for survey item TKS5 was found to be 4.024; standard deviation to be 0.0064, and the p-value to be 0.0108.

23. 443 (73.83%) respondents used the discussion forum of which 264 (44%) of them used ‘very frequently’ 179 (29.83%) used the forums ‘frequently’ respectively for survey item TKS6. The mean, standard deviation and the p-value were found to be 4.111, 0.7214 and 0.0158 respectively.

24. 263 (43.83%) and 173 (28.83%) respondents used computer conferencing ‘very frequently' and ‘frequently' respectively. It was observed that 74 (12.33%) respondents did not participate in computer conferencing. The mean score for survey item TKS7 was 4.021; standard deviation was 0.0034, and the p-value was 0.2107.

25. Workshops, seminars, training, induction training, smart classes etc., were used ‘very frequently' and ‘frequently' by respondents in the proportion of 38.50% (231 respondents) and 28.83% (173 respondents) respectively. 84 (14%) respondents expressed that they seldom went to workshops, seminars, training, induction training, and smart classes which was a surprising element in the findings. The values for mean, standard deviation and the p-value for the survey item TKS8 were 4.091, 0.8262 and 0.1001 respectively.

26. Brainstorming sessions were attended ‘very frequently' and ‘frequently' by 197 (32.83%) and 182 (30.33%) respondents respectively. It was also observed that 128 (21.33%) respondents have opined that they rarely and very rarely they attended brainstorming sessions and meeting, and 93 (15.50%) respondents never participated. In all, to put it another way, 221 (36.83%) respondents perceived that they did not get benefitted by these sessions. The mean score was for the survey item was 4.831; standard deviation was 0.9129, and the p-value was 0.0017.

27. 351 (59.50%) respondents involved in these activities ‘very frequently’ or ‘frequently’. It was a matter of concern that 108 (18%) practitioners did not have any publications to their credit. TKS10’s score for mean, standard deviation and the p-value were 4.241, 0.0034 and 0.0106 respectively.
28. 334 (55.67%) respondents opined that the system of rotation of duty contributes positively towards sharing of knowledge with different people. However, a significant number of respondents (17.33%) do not agree with the survey item TKS11. 162 (27%) of the respondents are sceptical about TKS11 and hence 'undecided'. The mean value was 4.010; standard deviation was 0.7943 and the p-value was 0.001.

29. The events - such as fairs, expos, etc., - were attended 'very frequently' and 'frequently' by 169 (28.17%) and 174 (29%) respondents respectively which together accounts for 57.17%. Of the remaining 42.83% respondents, 155 (25.84%) have expressed that they attended 'rarely' or 'very rarely' these kinds of events, and 102 (17%) seldom attended the events. The mean for the survey item TKS12 was 4.936 with the deviation of 0.7523 and the p-value of 0.0109.

The p-value for the three survey items TKS1, TKS4 and TKS7 were more than 0.05. This showed that statistically there exists a no significant difference among the opinions of the six categories in these cases, whereas difference exists in other survey items TKS2, TKS3, TKS 5, TKS6, TKS 8, TKS 9, TKS 10, TKS 11 and TKS 12 as the p-values for these items are less than 0.05. On the whole, Hypothesis 5 of this research study was rejected for its null hypothesis (H₀) and thereby accepted for the alternative formulation (H₁).

VI. Attitude towards knowledge sharing.

30. The attitude towards knowledge sharing among medical practitioners was sought category wise. AsstP/L were more in number (65, 10.83%) to subscribe to the survey item statement AKS1. In all, the agreement for AKS1 was given by 447 (74.5%) respondents. It was good to notice that nearly 75% of respondents were positive towards sharing of knowledge for the purpose of teaching and research. The mean score was 4.478; standard deviation was 0.2172 and the p-value was 0.1012.

31. The majority of the medical practitioners (473, 78.84%) agreed that knowledge sharing leads to new knowledge production. As far as AKS2 is concerned, 4.821, 0.7341 and 0.0481 were the scores for mean, standard deviation and the p-value respectively.
32. A large number of respondents 457 (76.17%) felt (agreed) that the recipient in the knowledge sharing process may misuse the knowledge. The mean value for the survey items AKS3 was 4.376; standard deviation was 0.9360, and the p-value was 0.0191.

33. 461 (76.84%) respondents were aware, to the varied degree of agreement, of the importance of knowledge sharing in teaching and research. The amazing factor was that 80 (13.33%) respondents did not wish to give their opinion (‘undecided’) about this survey item for the reasons best known to them. The mean for survey item AKS4 was 4.387; standard deviation was 0.7525, and the p-value was 0.0146.

34. 287 (47.33%) respondents have strongly agreed for the survey item AKS5. They felt that the sharing of knowledge does not affect or help in generating new ideas. Whereas 82 (13.67%) of respondents were in confused status that they neither agree nor disagree. 61 (10.17%) respondents disagreed. The scores for mean, standard deviation and the p-values are 4.065, 0.1803 and 0.0923 respectively.

The p-value for the survey item AKS1 was more than 0.05, and for all the other survey items AKS2, AKS3, AKS4 and AKS5 the p-values were less than 0.05. Statistically speaking, there is a significant difference among the categories in their opinion for the survey item AKS1, but for others no such differences found. From these results, on the whole, one can conclude that the Hypothesis 6 of this research study was accepted for its alternative formulation (H₁) and the null hypothesis was rejected (H₀).

VII. Personal factors for knowledge sharing (PKS)

35. 231 (38.50%) ‘strongly agreed’ that trust is important, 168 (28%) also ‘agreed’ about it. 108 (18%) disagreed with the survey item PKS1, at the same time 15.50% neither agree nor disagree with the survey item PKS1. As a surprising element, it was observed that the 3.7% respondents from the Professor category have not yet decided about the ‘Trust’ factor in knowledge sharing. The mean, standard deviation and the p-values for PKS1 were found to be 4.318, 0.0032 and the 0.1012.
221 (36.83%) respondents 'strongly agreed' that it is very important to have trust on colleagues' knowledge to have the knowledge sharing activity with them. In all, 380 (63.33%) practitioners considered in this study believed that having the trust in the knowledge of others is significant. Slightly more than 1/3rd respondents (220, 36.7%) seemed to be sceptical about the issue raised in PKS2 by either disagreeing or not able to decide. Analysis for survey item PKS2 gives the mean as 4.123, standard deviation as 0.0070 and the p-value as 0.0105.

425 (70.83%) respondents agreed, to the varied degree of conviction, that the sharing of knowledge reduces competitiveness among the practitioners. 175 (29.17%) the respondents either refused to take a position on this issue or disagree with the survey item PKS3. The values for mean, standard deviation and the p-value for PKS3 were found to be 4.412, 0.0021 and 0.0156 respectively.

465 (77.5%) respondents opined that the knowledge sharing is a time wasting factor. The mean value for PKS4 was 4.957, the standard deviation was 0.0083 and the p-value was 0.0106.

400 (66.67%) respondents recognized that intrinsic and extrinsic factors are significant. 200 (33.33%) of them are sceptical on this issue, of which 99 (16.50%) of the respondents are on the 'sit on the fence' situation as far as this issue is concerned. The values for mean, standard deviation and p-values were 4.249, 0.0040 and 0.0158.

The p-value for all the survey items PKS1, PKS2, PKS3, PKS4 and PKS5 are less than 0.05. This shows that there is a significant difference in each case. Hence, one can infer that there is statistical evidence to reject the null hypothesis (H₀) for all the five survey items. In other words, the six categories of respondents differ in their opinion for all the five survey items. From these results, on the whole, the Hypothesis 7 of this research study is accepted for its alternative formulation (H₁).
VIII. Benefits of knowledge sharing (BKS)

40. 371 (61.84%) have opined, with the varied degree of agreement, that knowledge sharing enhances better and faster decision making (BKS1). However, 109 (18.17%) respondents were undecided on the issue. And the remaining 120 (20%) respondents did not believe BKS1. The scores for mean, standard deviation and the p-value were found out to be 4.319, 0.0051 and 0.1810 respectively.

41. 388 (64.67%) respondents did agree that the knowledge sharing helps and promotes easy finding of information. Whereas quite a significant proportion of respondents (103, 17.17%) were undecided about this benefit, and the remaining 109 (18.16%) had given their disapproval to the survey item BKS2. 4.121, 0.1941 and 0.0171 were the values for mean, standard deviation and the p-value for BKS2.

42. 273 (45.50%) respondents ‘strongly agreed' that reusing of developed methods and expertise is an outcome of knowledge sharing, whereas 171 (28.50%) respondents ‘agreed' the same. Whereas 80 (13.33%) respondents refused to take a position on this issue and had given their response as ‘undecided', others had shown their disagreement with the survey item BKS3. The mean was 4.410, the standard deviation was 0.9140 and p-value was 0.0151.

43. 456 (76%) respondents ‘agreed’ that sharing of knowledge reduces duplication of work and saves time. 56 (9.33%) respondents ‘disagreed’ and 88 (14.67%) of them were uncommitted (‘undecided’) in their response. The mean for survey item BKS4 was 4.531; standard deviation was 0.7945, and the p-value was 0.0110.

44. 449 (74.83%) respondents agreed that the sharing and communication lessen the mistakes in their work environment. While 68 (11.34%) respondents disagreed, 83 (13.83%) of them responded that they are ‘undecided' about the issue. The mean for survey item BKS5 was 4.691; standard deviation was 0.9120, and the p-value was 0.0142.

45. 230 (38.33%) and 171 (28.50%) respondents ‘strongly agreed’ and ‘agreed’ with the survey item BKS6 respectively. Surprisingly, a significant number of respondents (108, 18%) neither agreed nor disagreed. 91 (15.17%) of
respondents expressed disagreement with BKS6. The scores for mean, standard deviation and the p-value were found to be 4.370, 0.3901 and 0.0162 respectively.

46. 408 (68%) respondents agreed that knowledge sharing promotes the standardization of processes and procedures. About 192 (32%) of the respondents either ‘undecided’ with BKS7 or do not agree with it. The mean for BKS7, the scores for mean, standard deviation and the p-value were found to be 4.027, 0.9102 and 0.0191 respectively.

47. 437 (72.83%) agreed that knowledge sharing helps in reusing of tools, templates or techniques. 91 (15.17%) respondents undecided on this aspect. 72 (12%) respondents clearly expressed that they did not agree with the survey item BKS8. The scores for mean, standard deviation and the p-value were found to be 4.831, 0.3990 and 0.0056. respectively.

48. 450 (75%) of the respondents agreed, 68 (11.33%) respondents disagreed with BKS9. 4.301, 0.5810 and 0.0021 were the values calculated for mean, standard deviation and the p-value.

49. 449 (74.84%) respondents agreed that sharing of knowledge, reusing of knowledge and sharing of experiences significantly reduce the time required to create and deliver assistance or service to customers. 68 (11.34%) respondents disagreed that sharing of knowledge accelerates the service. The scores for mean, standard deviation and the p-value were found to be 4.401, 4.862 and 0.0037 respectively.

50. 420 (70%) respondents gave their approval, to the varied degree of agreement, for the survey item BKS11. 99 (16.5%) respondents disagreed and 81 (13.50%) did not wish to record their opinion either way. The scores for mean, standard deviation and the p-value were found to be 4.600, 0.7110 and 0.0029 respectively.

The p-value for the survey item BKS1 is more than 0.05. It means that there is a significant difference among the six categories of respondents in their opinions. On the other hand, for all the other survey items, viz., BKS2, BKS3, BKS4, BKS5, BKS6, BKS7, BKS8, BKS9, BKS10 and BKS11, the p-values were less than 0.05. Hence, there exists significant difference among the respondents in these survey
items. From these results, on the whole, the Hypothesis 8 of this research study is accepted for its alternative formulation (H_1) and the null hypothesis is rejected.

IX. Barriers towards successful knowledge sharing (SKS)

51. 361 (60.17%) respondents perceived, to the varied degree of agreement, that there is a lack of specialists, while the others do not feel so. The scores for mean, standard deviation and the p-value were found to be 4.722, 0.6928 and 0.1012 respectively.

52. 366 (61%) respondents did agree that the lack of technology exists in the organizations where they are working. A significant number of respondents (234, 39%) either disagreed or abstained from taking a position on the issue. The scores for mean, standard deviation and the p-value were found to be 4.732, 0.0521 and 0.0375 respectively.

53. 402 (67%) respondents believed that there exists a culture barrier while sharing of knowledge. The scores for mean, standard deviation and the p-value were found to be 4.830, 0.0470 and p-value 0.0043 respectively.

54. 403 (67.16%) respondents agreed, to the varied degree of acceptance, that motivational factors act as a major barrier. Almost 1/3rd (197, 33.37%) of the respondents either ‘undecided’ about the issue or ‘do not agree’ with survey item SKS4. 4.030, 0.0030 and 0.0054 are the values for mean, standard deviation and the p-value respectively.

55. 412 (68.67%) respondents accepted that there is a lack of incentives in the form of monetary benefits in the organization which might negatively affect the knowledge sharing activities. The mean for survey item SKS5 was 4.938, the standard deviation was 0.0415 and the p-value was 0.0057.

The p-value for the survey items SKS1 and SKS5 were more than 0.05 which shows that there exists a no significant difference in these cases. On the other hand, there is statistical evidence to reject the null hypothesis (H_0) for the remaining three survey items, viz., SKS2, SKS3 and SKS4 as the p-values were less than 0.05. In other words, the six categories of respondents differ in their opinion for all these five survey items mentioned. From these results, on the whole, the Hypothesis 9 of this
A research study is accepted for its alternative formulation (H_1) and the null hypothesis (H_0) is rejected.

5.2 Suggestions

The suggestions made by the researcher is based on various factors. Apart from the observations from the data collected for the study, the researcher interacted with some of the respondents after the questionnaire was collected back from them. Some of the concerns of the researchers that came out during the analysis were discussed with a few respondents based on their availability to the researcher. These post-questionnaire interactions also threw some light on some of the issues. Moreover, the researcher is working in a medical institute and her experience also added value in coming out with a few suggestions. Needless to say that the researcher got the idea about some of the suggestions through her readings conducted for this study. It is hoped that these suggestions will help to improve knowledge sharing habits of medical practitioners.

1. It is known from the interactions with a few respondents that there should be written policy in medical institutions that make it mandatory for the medical practitioners to discuss their experience in the intra-institutional meeting held frequently.

2. The inter-departmental knowledge sharing is not happening effectively as per the results of this study. One of the factors ascribed to this is the bureaucratic organizational structure which tends to promote only the higher-ups in the hierarchy to have more access to inter-departmental knowledge. The institutions might come out with some strategy to eliminate the artificial barrier of hierarchy in the organization.

3. Loss of knowledge is a major concern for any institutions, and more so in medical institutions. In order to avoid the loss of knowledge due to retirement, the medical institutes normally hire the experienced medical professional after their retirement for few years. During this period, the existing staff imbibes the knowledge from them through frequent interaction and/or observation. It is also learnt from a medical practitioner that people are relatively more willing to share their knowledge post-retirement. Hence, this
strategy of re-employment through the hiring of retired professional yielded results to some extent.

However, a few medical practitioners expressed the opinion with the investigator that the extent of loss of knowledge in case of resignation of medical practitioners would be sudden and its impact is greater. The institutes did not have any specific arrangement for capturing the knowledge in such cases. The medical institutes should come out with some methods for avoiding loss of knowledge in such cases. One such strategy could be to insist on proper documentation and archiving them effectively. Inter-institutional arrangements can also be tried in such instances.

4. Permanent staff members should be motivated to coordinate with less experienced practitioners irrespective of their job status. The management should look into this aspect and find out the strategies for increasing the knowledge sharing culture between the groups.

5. The tacit knowledge of a person cannot be gauged in any tangible form. The tacit knowledge includes the cognitive skills, problem-solving ability, and capability to conduct research by the practitioners. These kinds of knowledge are considered as a special form of knowledge. These are found in large quantities with the experienced practitioners. The institutions should come out with some arrangements to tap these knowledge sources. With due recognition, incentives, rewards, etc., to these human knowledge sources, they can be encouraged to share their knowledge with their colleagues. This situation adds to the confidence among colleague particularly in solving a medical problem locally.

6. Leveraging knowledge assets is possible only when people record their experiences regularly in an organised manner. These records when made available to others within the organization, the efficiency of the organization as whole increases. Each institute should have a unit to come out with templates for recording such experiences and also to continuously monitor and evaluate the knowledge gathering processes.

7. Medical practitioners attend a number of inter-departmental meetings, workshops, demonstrations etc. The recording of these meetings from a
knowledge base for future use. It may be observed from the data that those who are in lower cadre in the organizational structure, have lack of information about the modalities of recording of the meeting and also access to this information. A suitable arrangement for managing this kind of situation is required in medical institutions.

8. Access to the Internet to all the practitioners and access to knowledge resources should be made as trouble-free as possible. The practitioners should have access to information from within the campus and also from outside campus.

9. The institutions should extend, as incentives, the IT facilities such as laptops, mobiles and so on to the medical practitioners and encourage them to involve more and more in knowledge sharing activities. Their involvement though the facilities made available may be monitored and controlled.

10. ‘Specialist chat room’ is an area where specialists are invited to have informal/formal chat/discussion with anyone who comes to the room. This breaks the organizational hierarchy or any such barriers. Everyone will be free to discuss and/or raise an issue.

11. A high-profile profession like medicine has a number of online discussion forums. The institutes should identify these forums and encourage their faculty members to participate in them. In addition, they can also come with locally managed new forums. Forums are considered as one of the best sources of knowledge sharing and knowledge acquiring platforms. The organizations should encourage the practitioners to involve in such activities or motivate them to participate in such groups.

12. Webinars and online conferencing – generally called computer conferencing – are the order of the day. It is more suited for a profession like medicine, where the professionals are hard pressed for time and their presence in the organization matters a lot at all times. Usually, these conferences concentrate their discussion on rare medical cases and procedures. Hence, the professionals attach a lot of importance which is a part of sharing of knowledge. These types of events need to be organized continuously on a timely basis in all areas of medical domain.
13. Workshops, seminars, trainings, induction training, smart classes which helps practitioners to upgrade themselves in their fields with new methods, medicines and technology. On interaction with a few such respondents, they said that the time constraints due to hectic schedules make them from being away from participating in such academic activities. The organizations should take note of this situation and should come out with strategies for encouraging them to participate in these activities more seriously.

14. Brainstorming sessions are a mandatory part of every medical institute which aims to summarise the activity of the departments or to present the projects they have taken. These activities are done as an institutional strategy for knowledge sharing. During her interaction with the practitioners, it came to the notice of the researcher that there is an unwritten policy that only one or two persons should attend the sessions and they, in turn, should summarise the discussion to others. However, the latter part is normally being ignored for various reasons. Moreover, more people should be encouraged to attend these sessions in person.

15. Documenting and publishing of experience and research study is important for dissemination of knowledge. The publishing could be in a very formal medium such as journals, books, conference proceedings or through an informal medium such as Newsletters, Written and Audiovisual reports, and so on. On inquiring about this trend it was found that the practitioners did not have training in writing, and thus have not cultivated the habit of writing articles. It need not be emphasised that there is a loss of valuable knowledge acquired by practitioners during their course of attending medical cases or treating patients. This is a serious issue and needs to be considered by organizations more rigorously than ever before.

16. Fairs, expos, etc., are usually organized by medical publishers and pharmaceutical companies to keep the medical practitioners updated about new inventions of medicines, equipment and technologies. These activities are considered as a knowledge sharing exercise by earlier studies. The post-questionnaire interaction threw no light on the possible cause for such behaviour. But, they felt that the organization should make the attending of these mandatory in the interest of the development and research.
17. During the general discussion with the respondents on this issue, the behaviour of non-sharing of knowledge has many tentacles. In this competitive world, practitioners are very keen on their professional skills and procedures which they do not wish to share with any of the practitioners. Sharing, they fear that, might negatively affect their position or social importance. It appears that they are also worried about theft of research ideas. Duplication of work is also one of the reasons for their non-sharing attitude. This attitude should be addressed by conducting group discussions among practitioners.

18. Reusing ideas and expertise in organizations need to improve through knowledge sharing activities. Some methods need to be developed so that the medical practitioners interact to exchange idea or methods and thus contributing to saving the time and efforts.

19. On talking to practitioners it was gathered from their opinion that duplication of work does not decrease significantly and perhaps does not relates to their nature of work in hospitals. But, the organization has the onus of convincing them regarding this benefit of avoiding duplication of work through some training or demonstration or other means.

20. Medical practitioners should be motivated by giving the confidence that their work will be acknowledged by many more people when it is shared and they will be recognised for their expert skills and it helps the organizational goal in general.

21. The lack of support from top management and lack of recognition for actively participating in knowledge sharing activities are the major inhibitors. The organizations should come out with some schemes for extending the monetary benefits for those who demonstrate their active involvement in the knowledge sharing activities.
5.2.1 Suggestions / Comments by respondents

The suggestions and comments made by some of the medical practitioners in the questionnaire are listed below.

1. Digital library needs to improve with open access to other journals which are indexed.

2. Knowledge sharing is to be done in all fields to get the best outcome in any field, this is one of the good study all the best. Please make it a point to reveal results.

3. Knowledge sharing is very important for medical practitioners to update themselves regularly, many of the doctors who are practising at remote places need current knowledge and updates in medicine.

4. Knowledge changes a person, in total knowledge is a give and take policy. It keeps a person active and enthusiastic sharing knowledge opens windows and doors to many rooms (paths) is not shared it is like shutting the doors and windows and will not see what is outside (Blind to outside world)

5. Knowledge is not only gained by books internet etc. but by every means and any person irrespective of age literacy, caste and creed. By sharing and gaining the either person is benefited and so the smooth working of the house hold s work institution nation and world occurs ignorance negligence is main evils for sharing and gaining knowledge.

6. Knowledge sharing requires necessary platform and thoughtful will to share it should be imbibed though awareness and education about its uses and need.

7. Knowledge sharing is the need of the human in medical field as you have to be update in this field and experiences came access by different people in some field helps in better diagnosis only thing which hampers knowledge sharing is ego among faculties and also lack of motivation every one should join hands to make it better.
8. Knowledge sharing at work place is an extremely important aspect which should be followed in all institutions. Each books (Text books) give different matters (or) even contrasting (contradictory statement) for the same topic this differences can be solved out by sharing the knowledge among staff and students as well . This helps in clarity regularly topic all institutions should provide at least an 1hr in week for KS all staff should equally participate with full motivation and not by force.

9. KS is always beneficial when it is taken in positive way some things which are confidential can be restricted KS should be practiced. KS by some is not possible as the feel that they might lose their importance. KS not only helps one to gain more knowledge (On experience) from peers but also make less forgetful one it is shared than just reading books.

10. KS is essential for the implement of the entire medical community at large but in the dearth of rule and regulations people are less motivated to attend libraries /seminars. Sharing knowledge should be liberal and open it should not be a display of resource with no access to people.

11. KS in government college due to poor attitude teaching /college has to be motivated by repeated workshops CME make available all sources easily available accessible to all staff to share and use and share other colleges.

12. KS at ours workplace definitely does help us to widely enrich our knowledge and also further to because the internet to catch up the rest of the information every one will not have knowledge of every thing so colleagues PG’s UG’s in small projects all can provide us inside range information.

13. Work atmosphere is very important in keeping ourselves update lack of motivation. Motivation is required, session by experts and staff on regular basis, adequate fund kept aside for such programs, it should be made compulsory for the teaching staff to attend certain number of CME conferences to update the knowledge

14. KS is very important aspect in the field of medicine it is present in out college to the extent of monthly clinical meet good internet. It can be improved to a great extent with motivation.
5.3 Suggestions for further study

Based on the experience gained during the research process and also the gaps found out in the literature, the following areas have been suggested for the future researchers.

1. Knowledge sharing in Academic institutions.
2. Knowledge and experience sharing practices among health professionals in hospitals under MCI, India
3. Knowledge and experience sharing among health professional working in corporate hospitals.

5.4 Conclusion

No one denies the significance of sharing of knowledge. But, in reality, it is not known how well the sharing of knowledge is practised in various sectors of human activity. The study looked into the knowledge sharing activities and perceptions about it among the medical practitioners.

It is well-known that the influencing factors of sharing of knowledge are organizational structure, personal factors, technological factors, benefits and barriers. The TRA and TPB theories use these in their model. In this study, the survey items were based on these two models and thus tested the influence of the factors on knowledge sharing behaviour on the medical practitioners.

Knowledge is an essential organizational resource that provides a sustainable competitive advantage in a highly competitive and dynamic world (Davenport & Prusak, 1998; Grant, 1996). Medical organizations must, therefore, consider how to promote the sharing of knowledge and expertise between experts who possess it and novices who need to know. In supplement, they need to emphasize the use of knowledge-based resources that already exist with the institution. A key issue for the failure of any knowledge management initiative to facilitate knowledge sharing is the lack of consideration of how the organizational and interpersonal context, as well as
individual characteristics, influence knowledge sharing behaviors (Scarborough & Swan, 2001).

Institutions in most cases, fail to achieve a sustainable competitive advantage in the competitive age because they are not able to manage their knowledge resources effectively and efficiently in the knowledge capturing process (Ngah, 2007). This makes it practically important to investigate how such institutions may facilitate the process of knowledge sharing to ensure a successful knowledge sharing initiative aimed at creating organizational knowledge. For instance, when managers understand the mechanism that drives organizational members to contribute their invaluable knowledge and work towards promoting knowledge sharing, then organizational knowledge may be created. This presents a high possibility for medical institutions to significantly improve competency, work-quality, problem-solving efficiency, decision-making skills and individual or group performance as well as overall team performance.

In addition, management commitment towards organizational knowledge creation and its investment in technology to ensure a free exchange of information and knowledge is critical for a successful organization. This is because it facilitates and ensures that individuals are able to propose new ideas, exchange concepts, access data, overcome challenges and find solutions that are useful in securing the success of an institution in the highly dynamic and competitive world. Effective knowledge sharing required for a successful KM initiative cannot be forced or mandated.

Management of medical organizations desiring to institutionalized knowledge sharing behaviours must foster facilitative work contexts. In light of the increasing importance of knowledge sharing in today’s world and even more so in the future, it is expected that the findings of this study would be useful to readers and other researchers engaged in similar studies aimed at enriching our collective understanding regarding knowledge sharing within and across organizations.