REFERENCES

1. ACI 211.1-91, Standard practice for selecting proportions for normal, heavy weight and mass concrete, Reported by ACI Committee 211, American Concrete Institute, Detroit, USA.

2. ACI 211.4R-93, Guide for selecting proportions for High Strength concrete with Portland Cement and fly ash, Reported by ACI Committee 211, American Concrete Institute, Detroit, USA.

3. ACI 363R-92, State of the Art Report on High Strength Concrete, Reported by ACI Committee 363, American Concrete Institute, Detroit, USA.

4. ACI 544.2R-89, Measurement of Properties of Fiber Reinforced Concrete, Reported by ACI Committee 544, American Concrete Institute, Detroit, USA.


17. ASTM C 1202, Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration, ASTM International, West Conshohocken.


47. IS 1199:1959, Methods of sampling and analysis of concrete, Bureau of Indian Standards, New Delhi, India.


51. IS 2340:1986, Methods for sampling of aggregates for concrete, Bureau of Indian Standards, New Delhi, India.
52. IS 2386:1963, Methods of test for aggregates for concrete, Bureau of Indian Standards, New Delhi, India.


57. IS 4031:1988, Method of physical test for hydraulic cement, Bureau of Indian Standards, New Delhi, India.


59. IS 516:1959, Methods of tests for strength of concrete, Bureau of Indian Standards, New Delhi, India.

60. IS 9103:1999, Specification for admixtures for concrete, Bureau of Indian Standards, New Delhi, India.


88. Obratil, RS, Pastorelle, MA Bosela, PA & Delatte, NJ 2009, ‘Examination of Steel Slag as a Replacement for Natural Aggregates in Concrete Paving Mixtures,’ Presented at the 88th Annual Meeting of the Transportation Research Board, Washington DC.

89. Obratil, RS, Patel, AB, Bosela, PA & Delatte NJ 2008, ‘Effect of Steel Slag Replacement on Fresh and Hardened Properties of Concrete,’ Presented at the 87th Annual Meeting of the Transportation Research Board, Washington DC.


