CONTENTS

Chapter I. Growth and reproduction in decapod crustaceans: A review.

1.1. Pattern of sexuality among crustaceans 3
1.2. Sex determination 4
1.3. Sex differentiation and sexual dimorphism 5
1.4. Physiology of moulting 5
1.4.1. Stages of moult cycle 6
1.4.2. Ecdysis 8
1.5. Physiology of reproduction 8
1.5.1. Gonadal morphology 9
1.5.1.1. Male reproductive system 9
1.5.1.2. Female reproductive system 10
1.5.2. Gametogenesis 10
1.5.2.1. Spermatogenesis 11
1.5.2.2. Oogenesis 11
1.5.2.2.1. Vitellogenesis 12
1.5.2.2.2. Chemistry of yolk 13
1.5.2.2.3. Vitellogenin and its synthesis 14
1.6. Physiology of storage tissues in relation to growth and reproduction 17
1.6.1. Hepatopancreas 17
1.6.2. Haemolymph 18
1.6.3. Muscles 19
1.7. Regulation of growth and reproduction in crustaceans 19
1.7.1. Regulation of growth 21
1.7.1.1. Stimulatory principles 21
1.7.1.2. Inhibitory principles 22
1.7.2. Regulation of reproduction 24
1.7.2.1. Stimulatory principles 25
Chapter 1. Seasonal programming of growth and reproduction

1.7.2.1.1. Vitellogenesis stimulating ovarian hormone
1.7.2.1.2. Mandibular organ
1.7.2.2. Inhibitory principles
1.7.2.2.1. Gonad inhibiting hormone
1.7.2.2.2. Mandibular organ inhibiting hormone
1.7.3. Interaction between growth and reproduction
1.8. Concluding remarks and future prospects

Chapter 2. Seasonal programming of growth and reproduction in *Sesarma quadratum*

2.2. Introduction
2.2. Materials and methods.
2.2.1. Investigation area
2.2.2. Sampling data
2.2.3. Maintenance of crabs
2.2.4. Statistical analysis
2.2.5. Micro-imaging system
2.3. Results
2.3.1. Identification of moult stages
2.3.2. Characterization of moult stages
2.3.3. Characterization of ovarian maturation stages
2.3.4. Frequency of premoult - postmoult activity
2.3.5. Frequency of breeding activity
2.3.6. Correlation between vitellogenesis and embryogenesis
2.3.7. Reproductive investment
2.3.8. Energy budget for reproduction
2.3.9. Spawning
2.4. Discussion
2.5. Summary
Chapter-3. Oogenesis in *Sesarma quadratum*, a continuous breeder.

3.1 Introduction

Section A. Gonadal differentiation in pre-pubertal crabs

3.2. Materials and methods.

3.3.A. Results

3. 3.A.1. Undifferentiated gonad of juvenile crabs

3. 3.A.2. Juvenile female

3. 3.A.3. Juvenile male

3. 4.A. Discussion

Section B Oogenesis in *S. quadratum* a continuous feeder

3.2. B. Materials and methods

3.2. B.1. Histology

3. B.2.2. Electron microscopy

3.2. B.3. Biochemical analysis

3.2. B.3.1. Proteins

3. 2.B.3.2. Lipids

3. 2.B.3.3. Carbohydrates

3. 2.B.3.4. Total free amino acids

3. 2.B.3.5. Individual free amino acids

3. 2.B.3.6. Quantification of amino acids from chromatogram

3. 2.B.3.7. Thin layer chromatography

3. 2.B.3.8. Ascorbic acid

3. 2.B.4. Histochemistry

3. 2.B.4.1. Proteins

3. 2.B.4.2. Lipids

3. 2.B.4.3. Carbohydrates

3. 2.B.4.4. Nucleic acids

3. 2.B.5. Statistical analysis

3.3 B. Results
3. 3.B.1. Morphology of the reproductive system in female *S. quadratum* 65
3. 3.B.2. Vitellogenesis 65
3. 3.B.3. Ovarian factor 66
3. 3.B.4. Gonadosomatic index 67
3. 3.B.5. Nucleocytoplasmic index 67
3. 3.B.6. Histology of the ovary 68
3. 3.B.7. Histochemistry 71
3. 3.B.7.1. Proteins 71
3. 3.B.7.2. Lipids 71
3. 3.B.7.3. Carbohydrates 72
3. 3.B.7.4. Nucleic acids 72
3. 3.B.8. Electron microscopy 72
3. 3.B.9. Biochemistry 75
3. 3.B.9.1. Water 75
3. 3.B.9.2. Total Protein 75
3. 3.B.9.3. Lipids 76
3. 3.B.9.4. Polysaccharide fraction 76
3. 3.B.9.5. Oligosaccharide fraction 77
3. 3.B.9.6. Total FAA 77
3. 3.B.9.7. Individual Amino acids 78
3. 3.B.9.8. Ascorbic acid 78
3. 4.B. Discussion 79
3. 5. Summary 89

Chapter -4. Regulation of growth and reproduction

4.1 Introduction 92
Section A Control mechanisms through extrinsic factors 92
4.2. A. Materials and methods. 94
4.3.A. Results 95
4.2. A. 1 Salinity 95
4.2. A. 2 Temperature 96
4.2. A. 3 Photoperiod 97
4.2. A. 4 Rainfall 97
4.2. A. 5 Relative humidity 98
4.2. A. 6 Lunar rhythm and programming of moult and reproduction 98
Section B Control mechanisms through intrinsic factors 100
4.2.B. Materials and methods. 103
4.2. B.1. Mandibular organ 103
4.2. B.2. Deeyestalking experiments 104
4.2. B.3. Radioimmunoassay 105
4.2. B.4. Statistical analysis 106
4.3. B. Results 106
4.3. B.1. Mandibular organ 106
4.3. B.1.1. Electron microscopy 107
4.3. B.2. Deeyestalking experiments 109
4.3. B.2.1. On moulting 109
4.3. B.2.2. On oogenesis 110
4.3. B.2.3. Effect of eyestalk ablation on biochemical constituents of ovary of S. quadratum 111
4.3. B.2.3.1. Histology 111
4.3. B.2.3.2. Total protein 111
4.3. B.2.3.3. Total lipids 112
4.3. B.2.3.4. Polysaccharide fractions 112
4.3. B.2.3.5. Oligosaccharide fractions 113
4.3. B.3. Ecdysteroid titre through Radioimmunoassay 113
4.3. B.3.1. Hemolymph ecdysteroid levels in relation to vitellogenesis 113
4.3. B.3.2. Hemolymph ecdysteroid levels in relation to moult stages 114
4.4. Discussion 114
4.5. Summary 123
REFERENCES 126