GIS Centre and Directorate of Geology & Mining, Dimapur, for providing me with necessary data.

My thanks to my two-special people, who accompanied me during my fieldworks, be it rain or sunshine: Ngukahoto Zhimomi, and Vikeyie Robert Soleho.

And here I am, thanking the entire members in the GIS Laboratory. It was great sharing laboratory with all of you during last five years for your contagious friendship, help, suggestions and creating a fun-filled environment. A special thank of mine goes to two of my fellow labmates: Debasmita and Francis, who helped me during the entire programme, exchanged interesting ideas, thoughts and making me feel that my Thesis is surely going to make a great impact, letting me stay grounded and foremost never letting me give up. Thank you both for being my support system right from the beginning till the end of this process.

There are my fellow doctoral students with whom I would not only able to support each other by deliberating over our research problems, yet also happily talking about things other than just our papers and their feedback, cooperation and of course friendship: Brica, Jaja, Livika, Menokhono, Moses, Nalini, Repenstar, Richard, and Zajano. Thanks to my friends: Ankur, Hukali, Ronsengenben, Shrikant, Yashaswi, Afo Elika and her lovely family. Sincere gratitude to my senior Dr. Supongtemjen for his help, encouragement and valuable time.

This is for my friends back at home who never wanted me to quit and constantly pushed me to reach my goal, return back home with a degree and always being there whenever I need to talk to, be it any time of the day or night: Carol, Frieda, Manom, Michelle, and Yanren.

Mr. D.H. Benjamin, thank you would not suffice enough to express my gratitude for being there for me during my last phase, taking care of my mental health and letting this end well.

Here is the special appreciation. My utmost and sincere gratitude to my “Ipu and Iza, my siblings, my brothers-in-law, nephews and nieces” for their undivided support, their wise counsel, a sympathetic ear, interest who inspired me and encouraged me to go my own way, without whom I would be unable to complete my thesis and for waiting for me long in anticipation. And importantly for accepting nothing less than excellence from me.

At last but not the least, I take back loads of experiences, knowledge, suggestions, workmanship and most importantly, human nature, for which I shall remain ever indebted and grateful.

I acknowledge the Almighty for being the Alpha and Omega of the entire Doctor of Philosophy programme.

Hinotoli V. Sema
ABSTRACT
Landslide risk is commonly defined as a function of landslide hazard and vulnerability indicators at risk such as physical and demography with attributed damage potentials with a defined magnitude. Vulnerability estimation is an important part of this assessment; a literature review demonstrates a lack of different vulnerability studies in landslides risk research with regard to physical and demography. These approaches determine the risk associated with landslides processes of a given magnitude and are applied in regional landslide risk analyses in Kohima Town of Nagaland. Landslide inventory was the first step which includes the mapping of landslide details of part of the study area. In order to assess the landslides susceptibility, a total of eight landslide inducing parameters; slope gradient, slope aspect, curvature, elevation, lithology, land use and land cover, drainage density, lineament density and topographic wetness index were considered and prepared with the help of toposheet, high resolution satellite imagery namely WorldView II, LISS IV data and extensive fieldwork. Landslide susceptibility maps were generated by calculating the relationship between all landslide inducing factors with the inventory and was classified into five susceptibility classes based on Jenks natural breaks classification namely very low, low, moderate, high and very high. There are four objectives in this research study; firstly to create the landslide inventory based on the available government data, published article, news reports, and extensive fieldwork; the second objective is to prepare a landslide susceptibility zonation using four different model Frequency Ratio (FR), Fuzzy Gamm Operators (FGO), Analytical Hierarchy Process (AHP) and Statistical Index (SI) and validation using Area under Curve (AUC) and R-Index method to check the accuracy and consistency of the models. The third objective is to create the physical and demographic vulnerability thematic maps with the help of population data from Census Data 2011 and updated with the data from the Kohima Municipal Council in 2015. The final objective is to prepare the landslide risk analysis of the study area which was carried using the best-fitted model of Landslide Susceptibility Index (LSI) and overlain with each of the vulnerability indicators with every five classifications of LSI. Total number and different types of building were used for the physical vulnerability and demographic aspects, the total population, female population and children below six years were taken into account classifying them each with the LSI classes. Risk analysis is an important source of decision making and developmental activities in the study area. Therefore, the output results of the present study can help the developers, policymakers, and engineers for urban management, mitigating the hazard, land-use planning so as to prevent and reduce the risk of a landslide.