Chapter 3
Cloud radiative impacts on the tropical Indian Ocean associated with the evolution of "monsoon-breaks"

3.1 Introduction
Clouds play a major role in the energy balance of the Earth's climate system. They exert both a cooling effect by reflecting sunlight back into space and a warming effect by trapping the heat emitted from the surface. For understanding the role of clouds in the climate system, the term "Cloud Radiative Forcing (CRF)" is a useful concept which provides a measure of how much clouds can modify the net radiation, at wavelengths ranging from 0.3 to 100 micrometers, of the Earth system. Regions of positive CRF indicate areas where clouds act to increase net energy into the Earth system; while areas of negative CRF signify regions where clouds act to decrease net energy into the Earth system.

The Earth Radiation Budget Experiment (ERBE) was the first satellite experiment that provided observational estimates of changes in the longwave and shortwave radiative fluxes at the top of the atmosphere due to clouds (Ramanathan et al., 1989; Harrison et al., 1990; Kiehl and Ramanathan, 1990, Stephens and Greenwald, 1991; Hartmann et al., 1992 and others). The ERBE data revealed that changes in the shortwave and longwave fluxes due to presence of deep clouds over the tropics were nearly of the same magnitude but opposite in sign (Kiehl and Ramanathan, 1990). A near cancellation between the shortwave CRF and longwave CRF in the equatorial Pacific was noted by Kiehl (1994). However, there are regional peculiarities wherein the shortwave and longwave components of CRF at the top-of-atmosphere (TOA) may not always cancel. For example, Rajeevan and Srinivasan (2000) showed that the widespread coverage of large amount of high clouds with large optical depths over
the Asian summer monsoon region gives rise to a large negative net cloud radiative forcing (NETCRF) during the June-September months. In a more recent study, Sathiyamoorthy et al., (2004) pointed out that the spreading of cloud tops by the strong easterly winds in the upper troposphere can increase the high-cloud amount over the Asian monsoon region during the northern summer.

This chapter investigates the importance of cloud-radiative effects that operate on sub-seasonal / intra-seasonal time-scales over the tropical Indian Ocean and monsoon environment. The motivation for this study stems due to the occurrence of substantial variations in the regional convective activity in association with the summer monsoon intra-seasonal variability (Waliser et al., 2005; Goswami et al., 2005). On this time-scale, the fluctuations of monsoon precipitation over the Indian landmass are characterised by periods of enhanced and reduced rainfall - which are commonly referred to as "active" and "break" phases of the monsoon (Ramarththy, 1969; Krishnamurti and Bhalme, 1976; Yasunari, 1979; Sikka and Gadgil, 1980; Krishnamurti and Subrahmanyan, 1982; Hartmann and Michelsen, 1989; Singh and Kripalani, 1985). Prolonged breaks in the monsoon rainfall often result in droughts which produce adverse socio-economic impacts in the region (Sikka, 1999). While monsoon-breaks are associated with suppression of rains over the Indian landmass, it has been known that convection generally intensifies over the near-equatorial Indian Ocean during break periods (e.g., Yasunari, 1979; Sikka and Gadgil, 1980; Lau and Chan, 1986; Krishnan et al., 2000; Annamalai and Slingo, 2001 and Krishnan et al., 2006).

For example, the extended monsoon-break during July 2002, which resulted in a severe drought, is a good case to illustrate this point. The 2002 monsoon drought has been explored by several investigators from different view-points (e.g., Gadgil, et al., 2005; Vinay Kumar and Krishnan, 2005; Fasullo,
The mean climatological conditions for July and the anomalous conditions during July 2002 are depicted in Figure 3.1. The major weakening of the southwest monsoon flow and the rainfall reduction during July 2002 are strikingly evident from the large negative anomalies of precipitation and low-level anti-cyclonic wind anomalies over India (Figure 3.1b). In addition, the anomalous enhancement of rainfall over the equatorial and South Eastern Tropical Indian Ocean (SETIO) region during 2002 is an important point to be noted.

The mean climatology of the total cloud and high cloud amounts for July, based on the International Satellite Cloud Climatology Project (ISCCP) dataset (Rossow and Schiffer, 1999), are shown in Figure 3.1c and Figure 3.1e respectively. It can be seen that the climatological total cloud cover over Bay of Bengal and the equatorial eastern Indian Ocean during July is dominated by high clouds. Studies have shown that the surface radiative budget over the equatorial eastern Indian Ocean is largely influenced by high clouds (e.g., Fu et al., 1996, Rajeevan, 2001). Also, it can be noticed from Figure 3.1e that the climatological high cloud cover is small over the western Arabian Sea off the coasts of Somalia and Arabia. In fact, earlier studies have reported that the contribution of high clouds to the total cloud cover is small over the colder oceanic regions associated with upwelling e.g., the western Arabian Sea; the sub-tropical regions of southeastern Pacific and Atlantic (Fu et al., 1996). The anomalies of total cloud and high cloud cover during July 2002 are shown in Figure 3.1d and Figure 3.1f respectively. The cloudiness anomalies during July 2002 depict a pattern of decreased cloudiness over the Indian landmass and increased cloudiness over the SETIO region consistent with that of the rainfall anomalies. In particular, the increased cloudiness over the SETIO during July 2002 was primarily due to high clouds (Figure 3.1f). Also while the high cloud cover was enhanced over the western Arabian Sea off the Somali Coast during July 2002 (Figure 3.1f), the low
clouds were greatly diminished over this region as evident from the negative anomalies of the total cloud cover (Figure 3.1d).

Figure 3.1: (a) Mean climatological rainfall (mm day$^{-1}$) from CMAP dataset and 850 hPa winds (ms$^{-1}$) from NCEP reanalysis for July. Notice the climatological precipitation maxima over the head Bay of Bengal, northeast India and the west Coast of India. A secondary rainfall maximum is seen over the SETIO region. The low-level winds show the southwest monsoon circulation with strong cross-equatorial flow from the Indian Ocean. (b) Rainfall and wind anomaly during July 2002 (c) Climatology of total cloud amount (%) for July from ISCCP dataset (d) Anomaly of total cloud amount during July 2002 (e) Same as (c) except for high clouds (f) Same as (d) except for high clouds.
Given the nature of anomalous convection over the SETIO during monsoon-breaks, a question that arises is the possible role of cloud-radiative effects in pre-conditioning the tropical Indian Ocean during the evolution of prolonged monsoon-breaks. This issue assumes significance because it provides a basis for understanding the long-lasting nature of convective anomalies over the SETIO region. Here, we particularly focus on extended monsoon-breaks which are longer than 2-weeks. It is well-recognised that air-sea exchanges on intra-seasonal time-scales in the tropical Indian Ocean give rise to significant fluctuations of sea surface temperature (SST) and heat fluxes at the ocean-atmosphere interface (Rao, 1987; Krishnamurti et al., 1988; Sengupta et al., 2001; Sengupta and Ravichandran, 2001; Bhat et al., 2001; Veechi and Harrison, 2002). Earlier studies have reported anomalous warming of SST preceding a convection maximum in association with positive shortwave and latent heat flux anomalies into the surface (e.g., Shinoda et al., 1998; Hendon and Glick, 1997; Woolnough et al., 2000). These investigations suggest that spatially coherent SST anomalies, with amplitude of about 0.3-0.4°C, develop in the Indian Ocean and propagate eastward along with the large-scale convective anomaly, but with a lag of nearly 10-15 days. Coincident with the convective maximum, the decrease in the shortwave flux and increase in the evaporation from the surface are known to cool SST following the development of convection (Woolnough et al., 2000). Coupled model simulations indicate that positive (negative) SST fluctuations in the Bay of Bengal are highly correlated with more (less) precipitation with a lead time of more than a week (Fu et al., 2003; Fu and Wang, 2004). Since monsoon-break transitions are accompanied by significant convection changes over the SETIO (e.g., Krishnan et al., 2000), it would be worthwhile to examine if cloud-radiative effects can modulate the variability of SST in the SETIO during the evolution of prolonged monsoon-breaks. This study is based on analysis of satellite observations of shortwave and longwave CRF at the TOA; radiative flux products at the surface, SST and related parameters. The datasets used in the
present study are described below.

3.2 Data used

Monthly shortwave and longwave fluxes at the TOA based on radiometric measurements from the Clouds and the Earth's Radiant Energy System (CERES) mission for the period March 2000 to February 2003 (Wielicki et al., 1996) are employed to understand the CRF at the TOA during the evolution of the prolonged monsoon-break of July 2002. The total and high clouds used in our analysis are based on the ISCCP D2 dataset (Rossow and Schiffer, 1999) obtained from ftp://isccp.giss.nasa.gov/pub/data/D2Tars. The ISCCP dataset, which is constructed based on infrared and visible radiances obtained from imaging radiometers aboard the international constellation of weather satellites, provides information about global distribution of clouds, their radiative properties, their variations on diurnal, seasonal and inter-annual time-scales. The dataset is available from July 1983 onward. The ISCCP D2 version represents a significant improvement over the previous version due to (1) revised radiance calibrations for removal of spurious changes in the long-term record (2) increased cirrus detection sensitivity over land (3) increased low-level cloud detection sensitivity in polar regions (4) reduced biases in cirrus cloud properties (5) increased detail about the variations of cloud properties (Rossow and Schiffer, 1999).

For the CRF at surface, we have examined ISCCP Radflux monthly dataset, in which the shortwave and longwave radiative fluxes are determined based on observations and model calculations (Zhang et al., 2004). Besides the monsoon-break of July 2002, we have also examined the cloud radiative effects during other instances of prolonged break spells in the past by analyzing the global daily Surface Radiation Budget (SRB) dataset which is available for the period 1983-1993. The SRB dataset uses information about clouds from ISCCP, TOA clear-sky albedo from ERBE along with TOA radiances and profiles of
atmospheric water vapor and temperature, in a model for computing longwave and shortwave radiative properties at the surface (http://eosweb.larc.nasa.gov/PRODOCS/srb). Other datasets used in our analysis are the daily SST in the tropical Indian Ocean based on the TRMM Microwave Imager (TMI) dataset which is available for the period December 1997 – December 2005 (ftp://ftp.ssmi.com/tmi); weekly OISST dataset derived from in situ observations and the NOAA Advanced Very High Resolution Radiometer (AVHRR) satellite measurements available since 1981 (http://www.cdc.noaa.gov/cdc/data.noaa.oisst.v2.html); and rainfall from Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and atmospheric winds from NCEP reanalysis (http://www.cpc.ncep.noaa.gov/products).

3.3 CRF and SST variations in the tropical Indian Ocean

3.3.1 CRF at the TOA

The longwave CRF at the TOA is defined as \(\text{LWCRF} = F_{\text{cir}} - F \) where \(F_{\text{cir}} \) and \(F \) are the “clear-sky” and “all-sky” longwave radiative fluxes respectively. LWCRF measures the decrease of thermal energy into the space radiated by the atmospheric column due to the presence of clouds and is typically a positive quantity. The shortwave CRF at the TOA is defined as \(\text{SWCRF} \text{(TOA)} = S (\alpha_{\text{cir}} - \alpha) \), where \(S \) is the monthly incoming solar flux at the top of the atmosphere and \(\alpha \) is the total sky albedo of the earth-atmosphere system and \(\alpha_{\text{cir}} \) is the clear-sky albedo of the earth atmosphere system. Basically SWCRF describes the difference between the clear sky and cloudy sky reflected solar fluxes at TOA. When clouds are present, they reflect more solar energy into space than would clear skies. SWCRF gives a quantitative estimate of this effect and is typically negative. The NETCRF is defined as the sum of SWCRF and LWCRF and the sign depends upon the relative values of LWCRF and SWCRF.
The all-sky and clear-sky shortwave fluxes from CERES measurements during July 2002 are shown in Figure 3.2(a-b). The corresponding longwave fluxes are shown in Figure 3.2(c-d). Regions where clear-sky scenes were absent (e.g., the Indo-China region, northeast and northwest India), are indicated by blank areas in Figures 3.2b and 3.2d. Our region of primary interest is the SETIO where the cloud cover was enhanced during July 2002. It can be seen from Figures 3.2a and 3.2b that the magnitude of the all-sky shortwave flux over the SETIO was significantly higher than the clear-sky shortwave flux. The all-sky shortwave flux averaged for the region (70°E-100°E; 10°S – Equator) was found to be about 100 Wm⁻² and the corresponding clear-sky shortwave flux was about 34 Wm⁻², so that the SWCRF was around -66 Wm⁻². On the other hand, the all-sky longwave flux for the (70°E-100°E; 10°S – Equator) was about 220 Wm⁻² and the clear-sky longwave flux was about 285 Wm⁻², so that the LWCRF was nearly 65 Wm⁻². The SWCRF and LWCRF at the TOA over the SETIO during July 2002 were nearly of same magnitude but opposite in sign, which is consistent with the ERBE observations (e.g., Kiehl and Ramanathan, 1990; Kiehl, 1994).

The changes in the SWCRF and LWCRF over the SETIO between June and July 2002 can be inferred from Figure 3.3. It can be seen that the cloud cover over the SETIO was relatively less during June 2002 as compared to July 2002 – the latter period coinciding with intense monsoon-break conditions over the Indian landmass (Figures 3.3a-b). The convective activity over the SETIO basically intensified during July 2002, while it was not as strong in June 2002. Further, it can be seen from Figure 3.3c and Figure 3.3d that the increased cloud cover over the SETIO during July 2002 was mainly due to high clouds. The SWCRF values averaged over the region (70°E-100°E; 10°S – Equator) were found to be around 57 Wm⁻² in June 2002 and -66 Wm⁻² in July 2002 respectively (Figures 3.3e and 3.3f). The corresponding LWCRF values during June and July 2002 were about +55 Wm⁻² and +65 Wm⁻² respectively (Figures 3.3g and 3.3h).
Basically the increase in the LWCRF at the TOA from June to July 2002 was more-or-less compensated by a similar decrease of the SWCRF.

Figure 3.2: TOA fluxes (Wm\(^{-2}\)) for July 2002 from CERES (a) All-sky shortwave flux (b) Clear-sky shortwave flux (c) All-sky longwave flux (d) Clear-sky longwave flux.
Figure 3.3. Clouds from ISCCP and CRF at TOA from CERES during June 2002 (left column) and July 2002 (right column) (a-b) Total cloud amount (%) (c-d) High cloud amount (%) (e-f) SWCRF (Wm$^{-2}$) (g-h) LWCRF (Wm$^{-2}$).
3.3.2 CRF at the surface

In contrast to the cloud radiative effects at the TOA, the NETCRF at the surface is known to be primarily determined by changes in the shortwave component; while the longwave effects have a minor contribution (Collins et al., 1996). The SWCRF at the surface is computed as the difference between all-sky surface downward SW flux and clear-sky downward SW flux. The SWCRF variations at the surface during 2002 based on ISCCP-FD Radflux dataset are shown in Figure 3.4. The SWCRF averaged over the SETIO region was found to be around -60 Wm$^{-2}$ in June 2002; while it was around -100 Wm$^{-2}$ during July 2002. Thus, the change in SWCRF over the SETIO region by nearly -40 Wm$^{-2}$, from June 2002 to July 2002, is consistent with the increase of cloud cover over the region (Figure 3.4c). However, the corresponding change in the LWCRF at surface from June to July 2002 over the SETIO is relatively small as compared to that of the SWCRF (Figure 3.4d-f). This clearly indicates that, it is the shortwave component that dominates the cloud radiative effects at the surface. In other words, the change of about -40 Wm$^{-2}$ in the SWCRF over the SETIO region, due to increased cloud cover, basically points to a smaller net heat loss from the ocean during June 2002 relative to that of July 2002.
Figure 3.4: SWCRF (Wm$^{-2}$) and LWCRF (Wm$^{-2}$) at surface from ISCCP-FD Radflux dataset (a) SWCRF for June 2002 (b) SWCRF for July 2002 (c) Difference in SWCRF (July minus June, 2002) (d) LWCRF during June 2002 (e) LWCRF during July 2002 (f) Difference in LWCRF (July minus June, 2002).
3.3.3 *Intra-seasonal variation of SST in SETIO during 2002*

In order to understand the cloud radiative effects on the intra-seasonal variability of SST in the SETIO during 2002, we examined the daily SST from the TMI dataset – which provides an unprecedented view of tropical SST variability in the presence of atmospheric convection and clouds (Wentz 1998; Chelton et al., 2001; Harrison and Vecchi, 2001). The time-series of SST averaged in the SETIO region is shown from June through September 2002 in Figure 3.5. It can be seen that the SST was higher than 29.3°C during most of June 2002 and decreased substantially during July and early August of 2002. While the high SST during June 2002 is consistent with relatively less cloud cover over SETIO, it can be seen that the magnitude of SST dropped by more than 1°C from the beginning of June 2002 to the end of July 2002 (Figure 3.5). Also notice that the SST during June 2002 was anomalously warmer than the mean climatological SST by more than 0.5°C. In addition, it is very important to recognise that the mean SST during July to September 2002 was quite high (> 28°C) in the SETIO. Krishnan et al. (2006) have reported that the high SST in the SETIO during 2002 was also associated with an anomalous deepening of the oceanic mixed-layer and depression of the thermocline in the region. This issue will be taken up for discussion later in Section 3.5. The important point here is the occurrence of very high SST in the SETIO during June 2002 indicating a pre-conditioning of the equatorial Indian Ocean prior to the commencement of the prolonged monsoon-break during July 2002.

3.3.4 *Surface CRF from SRB dataset (1983-93)*

The results from the 2002 analysis motivated us to examine the CRF at the surface during other instances of monsoon-breaks in the past. For this purpose, we have used the SRB daily dataset which is available from 1983 through 1993. Based on the monsoon-break days identified by Krishnan et al., (2000), we have
considered cases of prolonged monsoon-breaks during 1983-1993 which are
given in Table 3.1. Figure 3.6a shows the composite of cloud amount based on
the monsoon-break days listed in Table 3.1. The enhanced cloudiness over the
SETIO and decreased cloud amount over the Indian landmass brings out the
regional contrast in the cloudiness pattern associated with monsoon-breaks. The
enhanced cloud amount over northeast India in Figure 3.6a is a typical feature
seen during weak phases of the southwest monsoon that results from a
northward shift of the monsoon trough from its normal position (Ramamurthy,
1969; Rao 1976). The SWCRF at the surface shows negative values of about -110
Wm\(^{-2}\) over the SETIO region associated with the large cloud amounts (Figure
3.6b). However, the surface LWCRF over the SETIO is relatively small in
magnitude (~ 25 Wm\(^{-2}\)) in the monsoon-break composite (Figure 3.6c).

We now contrast the cloud radiative effects between “break” versus
“pre-break” phases. The composite of cloud amounts during the pre-break phase
is shown in Figure 3.6d. The pre-break composite is based on averages over 10-
days preceding the commencement of each monsoon-break. The well-defined
east-west oriented cloud band across the South Asia (Figure 3.6d), indicates a
very active phase of the monsoon convective activity over the Indian
subcontinent. The enhanced cloudiness is corroborated by the strong negative
SWCRF over the Indian landmass, Bay of Bengal and Arabian Sea in Figure 3.6e.
In contrast to the conditions over the subcontinent, the cloud amounts and
SWCRF are quite low over the SETIO during the pre-break phase (Figure 3.6d,
3.6e). The LWCRF during the pre-break phase is shown in Figure 3.6f.
Comparison of Figure 3.6e and Figure 3.6f shows that the magnitude of LWCRF
at the surface is smaller relative that of the SWCRF, with the latter mainly
contributing to the NETCRF at the surface. The change in the cloud amount
(“break minus pre-break”) is shown in Figure 3.7a. While the cloud amount over
the Indian region shows a decrease by as much as 25% during the transition from
the pre-break phase to the monsoon-break phase, the cloud amount over the SETIO shows an increase of a more-or-less similar magnitude. The change in NETCRF at the surface (Figure 3.7b) associated with the transition from the pre-break phase to the monsoon-break phase shows positive values (> 50 Wm⁻²) over the Indian landmass; and negative values of similar magnitude over the SETIO.

<table>
<thead>
<tr>
<th>Case</th>
<th>Year</th>
<th>Break period</th>
<th>No. of days</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1979</td>
<td>12 Aug-27 Aug</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>1982</td>
<td>24 Jun-7 Jul</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>1986</td>
<td>20 Aug-8 Sep</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>1987</td>
<td>14 Jul-3 Aug</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>1992</td>
<td>25 Jun-9 Jul</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>2002</td>
<td>3 Jul-30 Jul</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>2004</td>
<td>19 Jun-2 Jul</td>
<td>14</td>
</tr>
</tbody>
</table>

Table 3.1: List of prolonged break monsoon days. The identification of monsoon break days is based on the criteria adopted by Krishnan et al., (2000) using satellite OLR data. Here, we have considered prolonged break spells which are longer than 2-weeks. For the SRB dataset which is available from July 1983 to June 1995, the prolonged break days during 1986, 1987 and 1992 are used in our analysis. Likewise for the TMI data which is available since Dec 1997, we have used the prolonged breaks of 2002 and 2004 in our analysis.
Figure 3.5: Daily SST averaged for the region (70°E-100°E; 10°S-Equator) from the TMI dataset. The pink line is for 2002 and the dark blue line is the climatological mean for the 8-year baseline period (1998-2005). It is important to notice the strong SST warming during June 2002 prior to the monsoon break in July 2002. The SST in the SETIO dropped by nearly 1°C during the intense monsoon break of July 2002.
Figure 3.6: Composites of total cloud amount (%), surface SWCRF (Wm$^{-2}$) and surface LWCRF (Wm$^{-2}$) during “break” and “pre-break” phases – constructed from the Surface Radiation Budget (SRB) dataset w.r.t the prolonged monsoon-breaks during 1986, 1987 and 1992. The “break” composites are based on the monsoon-break days given in Table 3.1. The “pre-break” composites are 10-day averages prior to commencement of each of the break spell. The figures in the left column (a,b,c) correspond to the “break” composites; and the figures in the right column (d,e,f) correspond to the “pre-break” composites.
Figure 3.7: Difference maps ("break" minus "pre-break") show the changes in (a) Total cloud amount (%) and (b) NETCRF (Wm⁻²) at surface. The difference maps are composites constructed using the SRB dataset w.r.t the prolonged monsoon-breaks given in Table 3.1.
3.3.5 *Daily variation of convection and CRF over India and SETIO*

The commencement of a monsoon-break over the Indian subcontinent is preceded by significant convection changes over the tropical Indian Ocean, which can be inferred from satellite observations of Outgoing Longwave Radiation (OLR). Krishnan et al. (2000) noted the appearance of suppressed convection and high pressure anomalies over the equatorial Indian Ocean nearly 7-10 days prior to the initiation of a monsoon-break over India; subsequently the convectively stable anomalies were found to spread over the eastern Indian Ocean and also extended northward over the Bay of Bengal. Their analysis showed that monsoon-breaks tend to be initiated following a rapid west-northwest movement of the dry convectively stable anomalies from the Bay of Bengal into north-central India.

Figure 3.8a shows the time-series of OLR anomalies over the Indian landmass (solid line) and SETIO (dashed line) – which have been composited from several cases of extended monsoon-breaks (see Table 3.1). In Figure 3.8a, Day (0) corresponds to the day of monsoon-break initiation. The days preceding Day (0) correspond to the “pre-break” phase (i.e., Day -10, Day -9 ... Day -1); and the days following the initiation of monsoon-break (i.e. “break” phase) are given by (Day +1 ... Day +14, Day +15). It can be seen that prior to the commencement of monsoon-breaks, above normal convective activity (i.e., negative OLR anomaly) prevails over the Indian landmass. At this time, convection over the SETIO is subdued as evidenced from the positive OLR anomalies. Following the commencement of the monsoon-break phase, suppressed convection appears over the Indian landmass with positive OLR anomalies as high as +40 Wm^{-2}. In contrast, the OLR anomalies over the SETIO show negative values as low as -25 Wm^{-2} during the break phase. The intensification of convective activity over the SETIO can be seen from Day +2 onward. The out-of-phase variability of convection over the Indian landmass and the SETIO is consistently reflected in
the daily evolution of the NETCRF at the surface (Figure 3.8b). The NETCRF at the surface shows a gradual rise over the Indian landmass - with a mean value of about \(-82\) Wm\(^{-2}\) during the "pre-break" phase and about \(-37\) Wm\(^{-2}\) during the "break" phase respectively. In contrast, the NETCRF at the surface over the SETIO region shows a decline as the monsoon-break evolves – with a mean value of about \(-33\) Wm\(^{-2}\) during the "pre-break" phase and about \(-57\) Wm\(^{-2}\) during the "break" phase respectively.

Figure 3.8: Composited time-evolution of area-averaged OLR anomalies (Wm\(^{-2}\)) and NETCRF at the surface (Wm\(^{-2}\)) during monsoon-break transition. The composites are constructed based on the prolonged monsoon-breaks given in Table 3.1. The solid line is for the Indian landmass (70°E-85°E; 16°N-28°N); and the dashed line is for the SETIO (70°E-105°E; 10°S-5°N) (a) OLR anomalies from NOAA satellite (b) NETCRF at surface from SRB dataset.
3.4 SST changes associated with monsoon-break transitions
The signatures of cloud forcing on the ocean temperature anomalies, associated with monsoon-break transitions, are examined using SST from the OISST as well as the TMI datasets. While the OISST data has a longer temporal coverage from 1981 onward, it is basically a weekly SST product. Moreover since the OISST dataset is derived from AVHRR, the accuracy of SST measurements can be affected due to obstruction by clouds in the field of view. Keeping this in view, we have additionally utilised the TMI dataset in our analysis of SST variability since it overcomes the problem of obstruction due to clouds (Wentz 1998; Chelton et al. 2001; Harrison and Vecchi, 2001). Although the TMI SST is available for a relatively shorter period from December 1997 onward, it allows examination of SST variability during the prolonged monsoon-breaks that occurred during the summer seasons of 2002 and 2004 - which were two major monsoon-droughts in the recent past. Also the daily TMI SST has higher temporal representation of the intra-seasonal variability as compared to the weekly OISST.

First, we examine the daily evolution of OLR and SST from the TMI dataset for the SETIO region. Figure 3.9a shows the time-variation of OLR anomalies over the SETIO composited with respect to the prolonged breaks during 2002 and 2004 (see Table 3.1). The positive OLR anomalies from Day (-10) to Day (+1) indicate lack of convection over the near-equatorial Indian Ocean. The appearance of negative OLR anomalies from Day (+2) onward indicate intensification of convection over the SETIO region following the initiation of “monsoon-break” over the Indian landmass. The time-series of the TMI SST in the SETIO region (Figure 3.9b) shows a SST warming tendency from Day (-10) to Day (+1) – corresponding largely to the “pre-break” phase when relatively cloud-free conditions prevail over the SETIO. It can be seen that the mean SST during the “pre-break” phase is quite high (~ 29.3°C) suggesting that the lack of cloud
cover over the SETIO acts to pre-condition the underlying ocean by allowing more solar insolation to warm the ocean surface. From Day (+2) onward, the SST variation over SETIO shows a cooling tendency associated with the enhancement of convection and cloud-cover. The mean SST in the SETIO region averaged from Day (+2) to Day (+15) is about 28.6°C. Thus, the typical change in SST in the SETIO from the "pre-break" phase to the "break" phase is around 0.6°C. The decrease in the mean SST during the "break" phase relative to the "pre-break" phase is consistent with the reduction in solar insolation at the surface due to the increase in cloud cover over the SETIO.

![Composite time-evolution of area-averaged OLR anomalies (Wm^-2) and SST (°C) in the SETIO region associated with the evolution of the prolonged monsoon-breaks during 2002 and 2004 (see Table 3.1). The OLR anomalies are from NOAA satellite; and the SST is based on the TMI dataset.](image)

Figure 3.9: Composite time-evolution of area-averaged OLR anomalies (Wm^-2) and SST (°C) in the SETIO region associated with the evolution of the prolonged monsoon-breaks during 2002 and 2004 (see Table 3.1). The OLR anomalies are from NOAA satellite; and the SST is based on the TMI dataset.

Past studies have reported that the observed intra-seasonal variability of SST in the tropical Indian Ocean is predominantly driven by surface insolation anomalies associated with anomalous large-scale convection; with secondary contributions from the anomalies of latent and sensible heat flux across the
Indian Ocean (e.g., Hendon and Glick, 1997; Shinoda et al., 1998). Further model simulation experiments will be needed to accurately quantify the contributions of individual physical processes to the net surface heat flux variability and observed SST tendencies in the tropical Indian Ocean during break-monsoon transitions.

The spatial patterns of the SST difference ("break" minus "pre-break") based on the OISST and TMI datasets are shown in Figures 3.10(a, b). For the weekly OISST data, we have prepared SST composites during the "pre-break" and "break" phases based on the cases of prolonged breaks shown in Table 3.1. Since we have considered breaks having duration longer than 2 weeks, the average of SST for the first and second weeks of the break period were taken as the "break" phase. For the "pre-break" phase, we have considered the average of SST for the two weeks preceding the break period. The SST difference ("break" minus "pre-break") between the two phases is shown in Figure 3.10a. The positive SST anomalies off the Somali Coast and in the southeastern and central Arabian Sea are consistent with decreased evaporation and weakened coastal upwelling due to weakening of the Southwest monsoon flow (see Ramesh and Krishnan, 2005) during the "break" phase relative to the "pre-break" phase. This warming tendency is brought out more prominently in the TMI SST (Figure 3.10b) as compared to that of the OISST. Cold anomalies can be seen in the northern Arabian Sea (north of 15°N) off the Arabian Coast and northwest India. Examination of the wind-field revealed intensification of southerlies over this region during the "break" phase relative to the "pre-break" phase (figure not shown). Our understanding suggests that the SST cooling (Figure 3.10) off the Arabian Coast (north of 15°N) involves not only changes in the net heat flux at the surface; but also wind-induced changes in the ocean circulation. However, a detailed investigation of this issue will require a separate study. The point that is directly relevant to the present discussion is the occurrence of SST cooling in the
equatorial and southern tropical Indian Ocean (Figure 3.10). Negative SST anomalies, in the range -0.5°C to -0.9°C, can be seen extending eastward from about 60°E up to 95°E. The cooling tendency in the SETIO is much more pronounced in the TMI dataset as compared to the OISST anomalies. The SST change of nearly -1.0°C provides supporting evidence for the reduction in solar insolation at the surface over the SETIO region due to increase of cloud cover following the transition from the "pre-break" phase to the "break" phase.

Figure 3.10: Spatial pattern shows the change in SST (°C) between the "break" and "pre-break" phase from the (a) weekly OISST (b) daily TMI dataset. The OISST composite is based on the all the prolonged breaks during 1982-2004 given in Table 3.1. The TMI SST composite is based on the prolonged breaks during 2002 and 2004.
3.5 Discussions and concluding remarks

The implications of the CRF on the SST variability in the equatorial and southeastern tropical Indian Ocean (SETIO) are important in that they provide a physical basis for interpreting why monsoon-breaks can sometimes prolong for more than 2-3 weeks, thereby leading to drought conditions over the Indian subcontinent. Anomalously warm SST in the SETIO associated with strong east-west SST gradients favour westerly winds along the equator which enhance the moisture convergence and convective activity over the SETIO region (Krishnan et al., 2006). GCM simulation experiments suggest that the enhancement of convective activity over the warm SETIO can induce anomalous subsidence over the Indian subcontinent and weaken the monsoon Hadley cell, thereby leading to deficient rainfall over India (Krishnan et al., 2003).

It is seen from the present study that the scarcity of cloud-cover over the SETIO during the "pre-break" phase allows pre-conditioning of the equatorial Indian Ocean through increased solar insolation at the surface. During the "pre-break" phase, the NETCRF at the surface is found to be typically about -30 Wm$^{-2}$ with SSTs warmer than 29.3°C in the SETIO region. Following the transition from the "pre-break" to the "break" phase, the convection over the Indian landmass is suppressed; while that over the equatorial Indian Ocean intensifies. Results from the present analysis indicate that the cloud amount over the SETIO can increase by nearly 25% following the transition to the "break" phase. The NETCRF at the surface during "break" phase over the SETIO is found to be around -60 Wm$^{-2}$ (i.e., a change of about -30 Wm$^{-2}$ from the "pre-break" phase). SST measurements from the TMI indicate a cooling of about 0.6°C in the SETIO associated with the reduction in solar insolation at the surface due to increase of cloud amounts following the monsoon-break transition.
An important question is what sustains the anomalous convection over the SETIO during prolonged monsoon-breaks? It must be pointed out that despite the SST drop of about 0.6°C during the monsoon-break transition, the mean SSTs in the SETIO during the “break” phase were found to be as high as 28.6°C. One possible explanation for the high SST is the ocean pre-conditioning during the “pre-break” phase - wherein the lack of cloudiness over the SETIO allows increased solar insolation at the surface and warms the underlying ocean. Rajeevan (2001) suggested a similar mechanism for anomalous SST warming in the tropical Indian Ocean associated with the inter-annual variability of high clouds. In addition, Krishnan et al. (2006) have reported the possibility of a dynamical coupling between the southwest monsoon circulation and the thermocline depth variations in the eastern equatorial Indian Ocean on intra-seasonal time-scales. In this dynamical feedback, anomalous westerly winds along the equator push warm water eastward, so as to deepen and warm the surface mixed layer in the eastern equatorial Indian Ocean and also maintain a strong east-west gradient of SST in the equatorial Indian Ocean. In turn, the warm and deep oceanic mixed layer drives anomalous convection in the atmosphere, which suppresses the monsoon Hadley circulation and reinforces the anomalous equatorial westerly winds through low-level convergence.

Based on the above discussions, it is inferred that the enhanced SST warming in the SETIO during the “pre-break” phase; as well as the mixed layer deepening by strong equatorial westerly winds – significantly contribute to the maintenance of high SSTs (> 28.5°C) in the SETIO. It is realized that the relationship between the variability of SST and high clouds is rather complex for the Indian Ocean. Fu et al., (1990) suggested two types of relationships between deep convection, SST and surface convergence: (a) Deep convection is enhanced in large regions where SST > 28°C, provided there is no strong surface divergence (b) When the warmest SSTs in a region are less than about 28°C, deep
convection is significantly enhanced by strong surface wind convergence near the local maximum of SST (26° – 28°C). Based on the above points, it is deduced that the warm SST (> 28.5°C) during July 2002 and weak surface divergence over the SETIO were crucial in sustaining the enhanced convective activity over the region.

In summary, the present study has brought out the importance of cloud radiative effects on the intra-seasonal variability of SST in the SETIO region associated with the evolution of monsoon-breaks. The findings lend credence to the occurrence of significant SST warming in the SETIO during the “pre-break” phase, in association with increased surface solar insolation under relatively cloud-free conditions over the region. It is hypothesised that this preconditioning of the SETIO during the “pre-break” phase is important for sustaining high values of mean SST (> 28.5°C) during prolonged monsoon-breaks. These results could have likely implications on foreshadowing the monsoonal rains on time-scales of days-to-weeks. In a more recent study, Veechi and Harrison (2002) have suggested that SST variations in the Bay of Bengal can be useful precursors of an ensuing monsoon-break. Since the suppression of convection over the SETIO and the associated SST warming in the region appear nearly 7-10 days prior to the initiation of a monsoon-break over India, efforts to monitor the coupled interactions in the tropical Indian Ocean would greatly help in tracking the evolution of monsoon-breaks. The analysis presented here has been mostly explorative in nature; it is our future plan to carry out coupled model experiments to better quantify the details of the ocean-atmosphere coupling during monsoon-break transitions.