DECLARATION

I hereby declare that the thesis entitled “FLUVIAL MORPHOLOGICAL STUDIES OF CUSUS AND COLUMBIA VALLES ON MARTIAN SURFACE” submitted to Periyar University in partial fulfilment of the requirements for the award of degree of Doctor of Philosophy in GEOLOGY, is a record original research work carried out by me under the guidance and supervision of Prof. Dr. S. ANBAZHAGAN, and that it has not formed before the basis for the award of any Degree, Diploma, Associateship, Fellowship or any other similar titles in this or any other University or Institution of higher learning.

M. Chinnamuthu

Place: Salem -11
Date:
Acknowledgement

A bunch of faces are flashing while writing this part. With this gratefulness, I acknowledge all those whose meticulous effort and commitment to make this report possible and especially those whose names I hadn’t mentioned.

It is my great pleasure and immense gratitude that, I wish to acknowledge my guide, a man of great patience Prof. S. Anbazhagan, for his perpetual motivation and invaluable guidance and encouragement. I am grateful to him for spending his valuable time with me for completion of this work. As professor and Director he permitted to utilize centre facilities to carryout the work.

At this juncture, I express my thanks to my guide Prof. Dr. S. Anbazhagan to give me an opportunity to work in the project “Martian Valles”.

Many thanks to my Doctoral committee member Dr. K. N. Kusuma, Pondicherry University for their valuable suggestions.

I express my thanks to my seniors Dr. Gurubalamurgan, TATA institute of Social Sciences, Mumbai and Dr. S. Arivazhagan, Gandhigram Rural Institute, Dindigul for their help and valuable suggestions to improve the thesis. I thank to all my research colleagues Dr. A. Jothisu, Dr. S. Uma Maheswaran, K. Tamilarasan, E. Manikandan, G. Kavitha, C. Kasilingam, who were helpful in all my research activities. And also I thank my juniors S. Ranjith Kumar, A. T. Gowthaman, K. Jothimani, R. Ayyandurai who were helpful me directly or indirectly to bringing out this report well.

All non-teaching staffs of Geology department helped me in different ways during my research work in the department.

Special gratitude is reserved for my departed parents Mrs. Amaravathi, Mr. Muthusamy, and my loveable wife Mrs. Shanmugavalli, Assistant Director, Department of Geology & Mining, my elder brother Mr. M. Murugesan, and my children C.S. Mohith, C.S. Shahith for their unlimited love, and moral support without any expectation and seemingly unlimited belief.
I am grateful to Space Application Centre (ISRO), Ahmedabad for providing partial financial support through Project ‘Martian Valles’ under Announcement of Opportunity (AO) programme Sanction Order No: ISRO/SSPO/MOM-AO/2016-17. I am grateful to Periyar University to provide infrastructure facilities and permitted me to work in the project successfully completions of my research work.

The Martian data available at Astrogeology Science Centre (USGS), NASA, ESA and ISRO were extensively utilized for successful completion of my research work. I greatly acknowledge all the organization.

The inspiration, encouragement and guidance of my teachers, seniors and the affection of my friends have made the thesis complete, though mere words I can seldom express the gratitude. It is difficult to resist myself in spelling out some of those good hearted people.

M. Chinna Muthu
List of Publications

Journal

Paper Presented in Conference

Chinnamuthu M, Gowthaman A.T and Anbazhagan S (2017) An Overview of Mars Orbiter Mission (Mom) and its Scientific Payloads. XLI Indian Social Science Congress, Indian Academy of Social Science and Periyar University, 18 to 22 Dec 2017, Salem.

Gowthaman A.T, Chinnamuthu M, and Anbazhagan S (2017) Chronological Study of Mare Moscoviense Basin on Moon Using Lroc Wac Data. XLI Indian Social Science Congress, Indian Academy of Social Science and Periyar University, 18 to 22 Dec 2017, Salem.

CONTENTS

Acknowledgement
Appendix – Publications
Contents
List of Figures
List of Tables
Abstract

CHAPTER – I
INTRODUCTION

1.1 GENERAL
1.2 GEOLOGICAL SETTINGS
 1.2.1 Igneous Rocks
 1.2.2 Sedimentary Rocks
1.3 MARS EXPLORATION – AN OVERVIEW
1.4 SCOPE OF THE PRESENT STUDY
1.5 STUDY AREA
1.6 OBJECTIVES
1.7 METHODOLOGY IN BRIEF
1.8 SYNTHESIS

CHAPTER – II
FLUVIAL MORPHOLOGICAL STUDIES OF CUSUS VALLES
2.1 INTRODUCTION

2.2 ESTIMATION OF ABSOLUTE AGE OF CUSUS VALLES

2.3 GEOLOGY AND PHYSIOGRAPHIC SETTINGS OF CUSUS VALLES
 2.3.1 Channel Materials
 2.3.2 Crater Materials
 2.3.3 Plains and Plateau Materials

2.4 STRUCTURE

2.5 GEOMORPHOLOGY OF CUSUS VALLES
 2.5.1 Channel System
 2.5.2 Grooved Valley Floor
 2.5.3 Former Lobate Debris Aprons
 2.5.4 Craters and Crater Ejecta Materials
 2.5.5 Flow Materials

2.6 MORPHOMETRIC ANALYSIS
 2.6.1 Hydrologic Modeling and Cusus Valles demarcation
 2.6.2 Linear Morphometric Parameters
 2.6.2.1 Stream Order (Sµ)
 2.6.2.2 Stream Number (Nµ)
 2.6.2.3 Bifurcation Ratio (Rb)
 2.6.2.4 Stream Length
 2.6.2.5 Hierarchical Anomaly Index (HAI)
 2.6.2.6 Stream Sinuosity Indices (SSI)
 2.6.3 Areal Morphometric Parameters
 2.6.3.1 Drainage Density (Dd)
 2.6.3.2 Drainage frequency (F_s)
2.6.3.3 Drainage Texture (D_t) 50
2.6.3.4 Elongation Ratio (R_e) 50
2.6.3.5 Circularity Ratio (R_c) 51
2.6.3.6 Asymmetry Factor 52
2.6.4 Relief Morphometry 52

2.7 SYNTHESIS 53

CHAPTER – III
FLUVIAL MORPHOLOGICAL STUDIES OF COLUMBIA VALLES 54-94

3.1 INTRODUCTION 54

3.2 MATERIALS AND METHODS 55

3.3 GEOLOGY AND PHYSIOGRAPHIC SETTINGS 56
3.3.1 Location and Regional Settings 56
3.3.2 Absolute Age Determination 59

3.4 MORPHOLOGICAL STUDIES 61
3.4.1 Columbia Valles Channel System 61
3.4.1.1 Cross-Section Profile 65
3.4.1.2 Longitudinal Profile of channel system 66
3.4.2 Channel Morphological Features 66
3.4.2.1 Grooved Terrain 74
3.4.2.2 Streamlined uplands 74
3.4.2.3 Mensa 76
3.4.2.4 Cataracts 76
3.4.2.5 Cliffs 76
3.4.2.6 Hanging Valleys 79
3.4.2.7 Butte and basin Topography 79
3.4.2.8 Chasma Plain 79
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.2.9 Ganges Chasma</td>
<td>82</td>
</tr>
<tr>
<td>3.4.2.10 Fretted and hummocky Terrain</td>
<td>82</td>
</tr>
<tr>
<td>3.5 MORPHOMETRY ANALYSIS OF COLUMBIA VALLES</td>
<td>82</td>
</tr>
<tr>
<td>3.6 FLOW ESTIMATION</td>
<td>87</td>
</tr>
<tr>
<td>3.7 SYNTHESIS</td>
<td>94</td>
</tr>
</tbody>
</table>

CHAPTER – IV

RESULTS AND DISCUSSION

95-

110

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 GENERAL</td>
<td>95</td>
</tr>
<tr>
<td>4.2 CUSUS VALLES FORMATION AND GEOMORPHIC PROCESS</td>
<td>95</td>
</tr>
<tr>
<td>4.3 STRUCTURE IN CUSUS VALLES</td>
<td>98</td>
</tr>
<tr>
<td>4.4 MORPHOMETRIC ANALYSIS AND ITS IMPLICATIONS</td>
<td>101</td>
</tr>
<tr>
<td>4.5 CLIMATIC CONDITIONS AT CUSUS VALLES</td>
<td>104</td>
</tr>
<tr>
<td>4.6 EVOLUTION OF COLUMBIA VALLES</td>
<td>106</td>
</tr>
<tr>
<td>4.7 TIME PERIOD OF COLUMBIA VALLES</td>
<td>110</td>
</tr>
<tr>
<td>4.8 FLOW DYNAMICS IN COLUMBIA VALLES</td>
<td>110</td>
</tr>
</tbody>
</table>

CHAPTER – V

SUMMARY AND CONCLUSION

111-

116

REFERENCES

117-

132
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE No.</th>
<th>TITLE OF THE FIGURE</th>
<th>PAGE No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Historical map of planet Mars from Giovanni Schiaparelli.</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>MGS, MOLA colored data show global topography map of Mars.</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Viking Orbiter’s view of the northern ice cap of Mars.</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>(a) Global topography of Mars show north-south dichotomy, with high elevation in the south and low elevations in the north, and the presence of the Tharsis high in the west. (b) Distribution of the larger valley networks. Most of the valleys are in heavily cratered areas and are probably water-worn, but some in the volcanic regions of Tharsis and Elysium terrain might have been cut by lava (Carr, 2012).</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>Geological time scale of Mars and the major processes affecting the mineralogic composition of Mars and the ages of large-scale compositional units (after Ehlmann and Edwards, 2014)</td>
<td>8</td>
</tr>
<tr>
<td>1.6</td>
<td>Sedimentary minerals on the surface of Mars</td>
<td>10</td>
</tr>
<tr>
<td>1.7</td>
<td>Cratered Martian surfaces captured by the Mariner 4 spacecraft. (Credit: NASA /Jet Propulsion Laboratory).</td>
<td>11</td>
</tr>
<tr>
<td>1.8</td>
<td>Viking Lander 2 picture show image of the Martian surface sporting a thin layer of seasonal water ice in the form of frost (NASA/JPL).</td>
<td>12</td>
</tr>
<tr>
<td>1.9</td>
<td>Image of Noctis Labyrinthus region on Mars was taken by the HRSC onboard MEX. The HRSC took these pictures with a ground resolution of approximately 16 m/pixel. The view has been calculated from the digital terrain model derived from the stereo channels. (Credit: ESA/German Aerospace Center/ Freie Universitat Berlin).</td>
<td>14</td>
</tr>
<tr>
<td>1.10</td>
<td>Image of channel bar in Mangala Valles captured by Mars Color Camera (MCC) with spatial resolution of 380 m from an altitude of 7336 km. Mangla Valles is an outflow channel on Mars, located at 10°S, 151°W near the Tharsis region on Mars (Credit: ISRO MOM- Atlas).</td>
<td>16</td>
</tr>
<tr>
<td>1.11</td>
<td>Martian global data show the location of the Cusus and</td>
<td>19</td>
</tr>
</tbody>
</table>
Columbia Valles

2.1 a) Color coded MGS MOLA elevation image show the Cusus Valles in the Mars global view. Frame refers to Cusus Valles (b) THEMIS IR day image show the valley networks and craters of Cusus Valles

2.2 Crater-size frequency distribution (CSFD) method (Mars, Hartmann & Ivanov 2001) adopted for estimation of absolute age of Cusus Valles. Mars Odyssey THEMIS IR day image was used for mapping the craters in the Cusus Valles. The cumulative crater frequency plot indicated that the estimated age of Cusus Valles is 3.9 Ga

2.3 Geological map of Cusus Valles interpreted from Mars Odyssey THEMIS image

2.4 The Cusus Valles interpreted from Mars Odyssey THEMIS image. It is bounded by clear cut Wrinkle ridge structure running in the NE and SW boundary of the basin. lobate scarp, buried crater rim crest, lineation, depression and small channels are marked in the image. The arrows indicate direction of channel flow.

2.5 Mars Odyssey THEMIS image superimposed over the MGS MOLA data show Cusus Valles. The Valles boundary marked as wrinkle ridges in the Digital Elevation Model.

2.6 Cross sectional profile drawn along the Wrinkle ridges located in the Northeast (a) and Southeastern boundary of Cusus Valles (b). The northeastern wrinkle ridge has elevation of 300 m from the Valles regions and the wrinkle ridge the southeastern boundary has elevation difference 200m of from valles plain area.

2.7 Geomorphology of Cusus Valles interpreted from Mars Odyssey THEMIS image. The Valles associated with several geomorphic processed features such as channel system, grooved valley floor, Lobate debris, crater ejecta, flow materials, mensa, plateau, ridges/terraces, and streamlined feature.

2.8 Sink fill depth (SFD) output map of Cusus Valles derived from MOLA data for basin demarcation.

2.9 Cusus Valles demarcated from Mars Global Surveyor MOLA data using hydrological modelling tool in ArcGIS 10.4 software. The MOLA data show basin boundary along with...
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.10</td>
<td>Strahler order in Cusus Valles, drainage were manually identified and digitized from Mars Odyssey THEMIS image.</td>
</tr>
<tr>
<td>2.11</td>
<td>Cusus Valles drainage density map interpreted from Mars Odyssey THEMIS image. High drainage density demarcated in the northern and central part of the Cusus Valles.</td>
</tr>
<tr>
<td>3.1</td>
<td>(a) Color coded MGS MOLA elevation image show the Columbia Valles in Mars global view. Frame refer to Columbia Valles, (b) MOM MCC superimposed over MGS MOLA DEM image show the relative position of Columbia Valles in the Martian equatorial region. Valles Marineris and Capri Chasma connected with Ganges Chasma and northern Chryse Planitia through Columbia Valles. The other Chasma region such as Echus Chasma, Ophir Chasma and Eos chasma in the Valles Marineris region are shown in the figure.</td>
</tr>
<tr>
<td>3.2</td>
<td>Mars Odyssey THEMIS image shows Columbia Valles located in between Capri Chasma and Ganges Chasma. The Columbia Valles surrounded by chaotic (hummocky) terrain, mensa and cataracts. Arrows indicate water flow direction.</td>
</tr>
<tr>
<td>3.3</td>
<td>Crater count cumulative crater frequency distribution method (Mars, Hartmann & Ivanov 2001) adopted using Mars Odyssey THEMIS data. Columbia Valles fall in 3.58 Ga in fall early Hesperian time period, which is mostly associated with large flood events.</td>
</tr>
<tr>
<td>3.4</td>
<td>Mars Odyssey THEMIS IR image show channel system (ch1-ch6) developed due to catastrophic flooding in Columbia Valles. The depth of the channels gradually increased from ch1 to ch5 indicates the terrain sloping towards NW to SE. grooved terrain (gt), streamlined hills(sh), mensa(m), cataracts(cs), cliffs(cf), hanging valleys (hv), chasma, chasma plain(cp), chaotic terrain(ct) and butte-basin topography(bbt) are shown in the image.</td>
</tr>
<tr>
<td>3.5</td>
<td>Cross-section of profile (a-a1) drawn across the Columbia Valles for 70km width from Aurorae Planum to Eos Mensa in NW to SE direction (refer figure 3.4.). The cross section profile indicates channels in the Columbia Valles</td>
</tr>
</tbody>
</table>
along with depth and width of channels.

3.6 Cross-section profile (P-Q) drawn across the Columbia Valles (refer figure 3.4) in the downstream from channel 4 to 6, the profile show that mensae spread regions and channel 4 to 6 sloping towards the SE direction.

3.7 MOM MCC data show channel 1 to 5 in Columbia Valles and section of longitudinal profile for channel 1 (A-A'), channel 3 (B-B') and channel 5 (C-C'). Cross sectional profile drawn along P-P1 and Q-Q1, MCC data in 45m resolution show Capri Chasma, Mensa, chaotic terrain and Columbia Valles.

3.8 Columbia Valles (P-P') show cascade of channels at different elevation level. Channels eroded in different depth influenced by terrain slope and velocity of catastrophic flooding. Profile indicates the channels initiation (erosion) was started at 1150m elevation level.

3.9 Cross-section profiles at 10km downstream Columbia Valles (Q-Q1) show reduction of depth and reverse profile for certain channels.

3.10 Cross-section of profile indicates channel dimensions width and depth. Maximum channel depth reaches upto 750m below channel initiation level. Channel spread upto 8km width. The profiles further indicate the relative position of individual channel with reference to channel initiation level (Elevation 1150m).

3.11 Longitudinal profile drawn from Capri chasma to Ganges chasma along Columbia Valles over the length of 200km. (a) the longitudinal profile drawn along channel 5 show hummocky terrain over Capri chasma and spill over of water at 600m elevation level and initiation of channel erosion in the Columbia Valles. (b) longitudinal profile of channel 3 Sharp drop of profiles indicates hanging valleys which connects Columbia Valles into Ganges Chasma (c) the longitudinal profile for channel 1 the length of channels in Columbia Valles ranges from 40 to 80 km.

3.12 (a) Parallel grooves noticed in THEMIS image (b) the cross-section profile extracted from MOLA data spacing of furrows and ridges in the grooved terrain.
3.13 (a) Streamlined uplands in THEMIS image of Columbia Valles near channel 6 (b) cross-sectional profile of streamlined uplands plotted from MOLA data.

3.14 Mars Odyssey THEMIS IR image show Mensa located in between channel 3, 4 and 5 (b) cross-sectional profile of Mensa plotted form MOLA show the elevation difference is 270m.

3.15 Mars Odyssey THEMIS image show cataracts features near the boundary of Aurorae Planum (b) cross-sections profile show retreat gap along with ridge.

3.16 THEMIS image show hanging valleys in near Columbia Valles.

3.17 Mars Express HRSC data show chasma plain within Capri chasma with levelled plains surface at elevation of -4000m.

3.18 Mars Odyssey THEMIS show frettered and hummocky terrain in Capri chasma region.

3.19 Flow accumulation output map of Columbia Valles derived from MOLA data through hydrological model.

3.20 Columbia Valles basin demarcated from Mars Global Surveyor MOLA data using hydrological modelling tool in ArcGIS 10.4 software. The model delineation only channel 4, 5 and 6 based on flow accumulation an pour point.

3.21 Close-up views of Columbia Valles Profile P-Q was used to evaluate initial overland flooding prior to valley incision, as well as peak flooding conditions. Profile R-S was used to evaluate late-stage flows in central channels.

3.22 Topographic cross-sections for Columbia Valles along profiles P-Q and R-S. (a) The channel margin elevation of 1200 m in the North West represents the initial overflow elevation from Aurorae Planum toward south western Eos mensa (b) Late stage flow in the Columbia Valles.

3.23 Longitudinal profiles of Columbia Valles channels drawn from MOLA data (a-f) profile of channel 1-6.

4.1 MGS, MOLA image show the elevation image of Cusus Valles and longitudinal profile shows the development of Valleys in concave shape slope.
4.2 The THEMIS image of Cusus Valles show section of profile drawn across the wrinkle ridges. (b) Cross sectional profile show the Cusus Valles bounded by wrinkle ridges indicates graben structure.

4.3 MGS MOLA image show the shifting of drainage course in Cusus Valles indicates that probably controlled by fault.
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE OF THE TABLE</th>
<th>PAGE No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Orbital, rotational and physical characteristics of Mars and Earth (McKay and Marinova, 2001)</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Linear morphometric parameters of the drainage network of Cusus Valles</td>
<td>45</td>
</tr>
<tr>
<td>2.2</td>
<td>Morphometric parameters analysis of Cusus Valles</td>
<td>46</td>
</tr>
<tr>
<td>3.1</td>
<td>Channel systems and their geometry in Columbia Valles</td>
<td>71</td>
</tr>
<tr>
<td>3.2</td>
<td>Morphometric parameters on Columbia Valles</td>
<td>72</td>
</tr>
<tr>
<td>3.3</td>
<td>Hydrologic Overland Flow calculations for Columbia Valles</td>
<td>91</td>
</tr>
<tr>
<td>3.4</td>
<td>Hydrologic Flow calculations for Columbia Valles channels</td>
<td>92</td>
</tr>
</tbody>
</table>
Abstract

Planetary geoscientists are always having an interest on the origin of valley networks, channel formation and climatic condition on the Martian surface. Majority of the studies revealed that the origin of valley network formation is due to running water. The warm and wet climatic conditions prevailed during Noachian time period supported for atmospheric precipitation and existence of liquid water on Mars. The availability of liquid water is unstable in the present day climatic conditions on Mars. The development of outflow channels and source of water for such catastrophic flooding on Martian surface is remaining matter of debate among planetary scientists. With this background, a fluvial morphological study was conducted from selected Valles region on Mars. In this study two Martian Valles namely Cusus and Columbia Valles, respectively representing the rainfall induced valley network and channel development by catastrophic flooding were selected. Cusus Valles is located in the South East of Cassini crater at 14.34°N latitude and 50.5°E longitude. Columbia Valles is located at 9°25’S latitude and 317°04’ E longitude in the east of Valles Marineries region. Both Cusus and Columbia Valles are located in the southern highlands region. The morphological studies of Cusus and Columbia Valles were carried out with help of Mars Odyssey THEMIS IR day image, MGS MOLA data and MOM, MCC data. The ArcGIS 10.4, ENVI 5.2 and JMARS software were used for extracting the morphological features and profiles of the channels. Through CSFD method, age of Cusus Valles is estimated as 3.9 Ga, which fall in late Noachian time period. In comparison with Martian global time scale, this period associated with warm and wet climatic conditions. The geology, structure, geomorphology and morphometric parameters of Cusus Valles were studied in details. The results suggest that Cusus Valles is evolved by fluvial process controlled by hydrological cycle, surface runoff, erosion and infiltration processes during late Noachian to middle Hesperian time period. The
immature valley network formation observed in the Cusus Valles through morphometric analysis. The morphometric analysis is supported for the high permeability and infiltration processes dominated in the Cusus Valles. The Columbia Valles might have evolved approximately 668 million years, after the formation of Cusus Valles. The catastrophic flooding originated from rupturing of cryosphere is the major source for formation of Columbia Valles outflow channels. The Columbia Valles channel system, morphological features, longitudinal and cross-sectional profiles were studied in detail with the help of MOLA, THEMIS and MCC data. The catastrophic flooding originated from Valles Marineris region and Aurore Planum is stored in the Capri chasma later overflow and development of outflow channels. The outflow channels developed over 70-80km width and 3.72-6.2 km length. The presence of the very low channel sinuosity, broad valleys, streamlined highlands, cataracts, cliffs, fretted or hummocky terrain, butte and basin topography along Columbia Valles invariably indicates the catastrophic flooding and formation of outflow channels. We assume that the huge volume of water might have trapped below the permafrost layer at Aurore Planum. The increase of hydrostatic pressure and subsequent cryosphere rupturing developed catastrophic flooding at Columbia Valles. We have estimated the flow discharge in the Columbia Valles at various stages. The estimated overland flow in the Valles region immediately after the spillover from Capri chasma. 3.62 m³ s⁻¹ over the width of 60km. The total estimated flow in all six channels in Columbia Valles is 19.98 m³ s⁻¹. We estimated the age of the Columbia Valles is 3.59 Ga approximately during early Hesperian time period and during that time climatic conditions is also shifted from warm to cold conditions. Overall, the result revealed that the origin of Cusus Valles, prevailing climatic conditions and the time period of formation of valley networks. Similarly, the morphological studies of Columbia Valles is useful in understanding of the nature of catastrophic flooding, associated features and fluvial dynamics in the Valles regions.