CHAPTER 8

BIBLIOGRAPHY
BIBLIOGRAPHY


Environment News Service (ENS), (October 18, 2006), New York.


Hassan, Z., & Aarts, M. G. (2011). Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants. Environmental and Experimental Botany, 72(1), 53-63.


evidence for a high-affinity cadmium transporter highly expressed in a *Thlaspi caerulescens*
ecotype. New Phytologist, 149(1), 53-60.
in tomato (*Lycopersicon esculentum*) plants grown in hydroponics. Environmental and
Experimental Botany, 65(2-3), 376-385.
communis*. Journal of Agricultural and Environmental Sciences, 24(4), 674-677.
contamination in groundwater and a risk assessment study for the residents in the Kandal
Lux, A., Martinka, M., Vaculík, M., & White, P. J. (2010). Root responses to cadmium in the
Ma, Y., Prasad MNV, Rajkumar M, Freitas H. (2011a) Plant growth promoting rhizobacteria and
endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 29:
248–58.
Ma, Y., Oliveira, R. S., Freitas, H., & Zhang, C. (2016). Biochemical and molecular mechanisms of
plant-microbe-metal interactions: relevance for phytoremediation. Frontiers in Plant
Science, 7, 918.
Madaan, R., Bansal, G., Kumar, S., & Sharma, A. (2011). Estimation of total phenols and
flavonoids in extracts of *Actaea spicata* roots and antioxidant activity studies. Indian Journal
of Pharmaceutical Sciences, 73(6), 666.
acid-treated and garlic-treated *Canna indica* roots. Journal of Applied Sciences and
Environmental Management, 15(1).
Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a
review. Ecotoxicology and Environmental Safety, 126, 111-121.
plant species for the phytoremediation of arsenic-contaminated areas of


McKeon, T. A. (2016). Castor (Ricinus communis L.). In Industrial Oil Crops (pp. 75-112).


Ministry of Environmental Protection of China (2013). Soil Pollution and Physical Health.


Muszyńska, E., Kalużny, K., & Hanus-Fajerska, E. (2014). Phenolic compounds in Hippophaë rhamnoides leaves collected from heavy metals contaminated sites.[W:] Plants in urban areas and landscape. Slovak University of Agriculture in Nitra, Faculty of Horticulture and Landscape Engineering, 11-14.


Patten, C. L., & Glick, B. R. (2002). Role of *Pseudomonas putida* indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology, 68(8), 3795-3801.


