GENERAL REMARKS

1. The 1H or 13C NMR spectra were recorded on a Varian XL-300 (300 or 75 MHz),
 Brucker Avance DPX 300 (300 or 75 MHz) or a Brucker Avance DRX 500 (500 or
 125 MHz) instruments using DMSO-d_6 solvent. Chemical shifts are expressed in δ
 (ppm) units downfield to internal standard TMS. The 1H or 13C NMR data is
 expressed using standard notations such as chemical shift, splitting pattern
 ($J =$ coupling constant in Hz units) for assignment.

2. IR spectra were recorded on Shimadzu IR-408, a Shimadzu FTIR instrument. The
 spectra were recorded either a thin film in or KBr pellets and expressed in wave
 number (cm$^{-1}$).

3. Elemental Analysis was performed on a Hosli CH-Analyzer and are within ± 0.3 of
 the theoretical percentage.

4. Mass Spectra were recorded on a Shimadzu GC-MS QP 2010A mass spectrometer
 with an ionization potential of 70 eV.

5. Melting Points were determined using a Buchi Melting Point Apparatus, Mod.
 B-545 in open capillary tubes and measured in °C.

6. All reactions were monitored by Thin Layer Chromatography on 0.2 mm silica gel F-
 254 (Merck) plates using UV light (254 and 366 nm) for detection.

7. After work up, solvents were removed under reduced pressure with Heidolph or
 Büchi Rotary Evaporator and re-used by standard purification methods.

8. The toxic reagents like triphosgene was disposed by standard procedure after removal
 from the reaction mixture.

9. All reagents were purchased from S. D. Fine, Merck, Acros, Aldrich, Fluka, Loba
 and Thomas & Becker and were purified and dried according to the procedures
 given in literature.