List of Figures

1.1 Skarn with calcium titanate (mineral perovskite) crystals.

1.2 Ideal perovskite structure showing (a) cubic A unit cell with A and B cations shown in red and green, respectively and O anions shown in pink (b) polyhedral view of corner sharing [BO₆] octahedra.

1.3 Ideal cubic perovskite structure

1.4 (a) anti-phase tilting and (b) in-phase tilting, viewed along the direction of the tilt axis.

1.5 Crystal Structure of Spinel

1.6 Temperature dependent behaviours of (a) susceptibility and (b) inverse susceptibility for different types of magnetic materials.

1.7 Different types of spin arrangements in magnetic materials.

1.8 Schematic diagram of the (a) super exchange and (b) double exchange interactions mechanism

1.9 Log conductivity as a function of temperature

1.10 Free electron theory of a metal electrons in a potential well

1.11 Density of states on the free electron theory

1.12 Potential energy of electrons as a function of distance through a solid.

1.13 Overlapping band structure of metals.

1.14 Band structure of semiconductors and insulators.

1.15 Doped N-type semiconductor.

1.16 Doped P-type semiconductor

2.1 a) vitreous gel precursor b) Ignition of reaction in combustion Method.

2.2 Reactions in the pechini method.

2.3 Four different types of lattice point arrangements for a cubic cell. From left to right: primitive (P), body-centered (I), Face centered (F) and End face centered (C).
2.4 Diffraction of X rays incident upon parallel lines of atoms separated by distance d_{hkl}. The angle between the incident and diffracted beam is 2θ.

2.5 Diffraction of X-rays from an isotropic powdered sample resulting in diffraction cones that are at an angle 2θ from the incident beam.

2.6 A Faraday balance.

2.7 Schematic representation of a VSM.

2.8 Collinear four-probe array on a semi-infinite sheet of thickness, W; outer probes are the current input and output probes; inner probes measure the potential difference, V, between them.

3.1 Thermogravimetric (TGA) analysis and differential thermal analysis (DTA) curves of NiFe$_{1-x}$Dy$_x$CrO$_4$.

3.2 X-ray diffraction patterns of NiFe$_{1-x}$Dy$_x$CrO$_4$.

3.3 Rietveld profile fitting for the XRD patterns of NiFe$_{1-x}$Dy$_x$CrO$_4$.

3.4 EDX spectrum of NiFe$_{1-x}$Dy$_x$CrO$_4$ for $x = 0.0$ and 0.02.

3.5 FESEM micrographs of polycrystalline powders of NiFe$_{1-x}$Dy$_x$CrO$_4$ for $x = 0.0$ and 0.02.

3.6 Variation of magnetization with applied field for NiFe$_{1-x}$Dy$_x$CrO$_4$.

4.1 Typical Miller-indexed XRD patterns for La$_{0.7}$Ca$_{0.25}$A$_{0.05}$Mn$_{0.8}$Cr$_{0.2}$O$_3$.

4.2 Rietveld profile fitting for the XRD patterns of La$_{0.7}$Ca$_{0.25}$A$_{0.05}$Mn$_{0.8}$Cr$_{0.2}$O$_3$.

4.3 EDX spectrum of samples La$_{0.7}$Ca$_{0.25}$A$_{0.05}$Mn$_{0.8}$Cr$_{0.2}$O$_3$.

4.4 SEM micrographs of polycrystalline powders of the samples La$_{0.7}$Ca$_{0.25}$A$_{0.05}$Mn$_{0.8}$Cr$_{0.2}$O$_3$.

4.5 Magnetization (M) versus temperature(T) curves for La$_{0.7}$Ca$_{0.25}$A$_{0.05}$Mn$_{0.8}$Cr$_{0.2}$O$_3$.

4.6 $d(\chi_m)/dT$ versus T plot for La$_{0.7}$Ca$_{0.25}$A$_{0.05}$Mn$_{0.8}$Cr$_{0.2}$O$_3$.

4.7 Variation of Magnetization (M) as a function of magnetic field (H).

4.8 Plot of temperature dependent inverse molar magnetic susceptibility (χ_m^{-1}) for the La$_{0.7}$Ca$_{0.25}$A$_{0.05}$Mn$_{0.8}$Cr$_{0.2}$O$_3$.

4.9 Resistivity (ρ) dependence on temperature (T) for La$_{0.7}$Ca$_{0.25}$A$_{0.05}$Mn$_{0.8}$Cr$_{0.2}$O$_3$.

xii
4.10 Plots of log (ρ/T) versus $1/T$ for La$_{0.7}$Ca$_{0.25}$A$_{0.05}$Mn$_{0.8}$Cr$_{0.2}$O$_3$.

5.1 Typical Miller-indexed XRD patterns for La$_{0.8}$R$_{0.1}$Ca$_{0.3}$Mn$_{0.9}$Cr$_{0.1}$O$_3$

5.2 Rietveld profile fitting for the XRD patterns of La$_{0.8}$R$_{0.1}$Ca$_{0.3}$Mn$_{0.9}$Cr$_{0.1}$O$_3$

5.3 Variation of cell parameters and unit cell volume as a function of average A-cation radius ($<r_A>$)

5.4 Variation of tolerance factor (t) and average Mn/Cr–O–Mn/Cr bond angle as a function of average A-cation radius ($<r_A>$)

5.5 EDX spectrum of La$_{0.6}$R$_{0.1}$Ca$_{0.3}$Mn$_{0.9}$Cr$_{0.1}$O$_3$

5.6 SEM micrographs of polycrystalline powders of La$_{0.6}$R$_{0.1}$Ca$_{0.3}$Mn$_{0.9}$Cr$_{0.1}$O$_3$

5.7 Temperature Dependence of the molar magnetic susceptibility (χ_m) for La$_{0.8}$R$_{0.1}$Ca$_{0.3}$Mn$_{0.9}$Cr$_{0.1}$O$_3$

5.8 $d(\chi_m)/dT$ versus T plot for La$_{0.6}$R$_{0.1}$Ca$_{0.3}$Mn$_{0.9}$Cr$_{0.1}$O$_3$

5.9 Plot of temperature dependent inverse molar magnetic susceptibility (χ_m^{-1}) for the La$_{0.8}$R$_{0.1}$Ca$_{0.3}$Mn$_{0.9}$Cr$_{0.1}$O$_3$

5.10 Resistivity (ρ) dependence on temperature (T) for La$_{0.6}$R$_{0.1}$Ca$_{0.3}$Mn$_{0.9}$Cr$_{0.1}$O$_3$

5.11 Plots of log (ρ/T) versus $1/T$ for La$_{0.6}$R$_{0.1}$Ca$_{0.3}$Mn$_{0.9}$Cr$_{0.1}$O$_3$

6.1 Typical Miller-indexed XRD patterns for La$_{0.5}$Nd$_{0.2}$Ca$_{0.3}$MnO$_3$

6.2 Typical Miller-indexed XRD patterns for La$_{0.5}$Nd$_{0.2}$Ca$_{0.25}$K$_{0.05}$MnO$_3$

6.3 Rietveld profile fitting for the XRD patterns of La$_{0.5}$Nd$_{0.2}$Ca$_{0.3}$MnO$_3$

6.4 Rietveld profile fitting for the XRD patterns of La$_{0.5}$Nd$_{0.2}$Ca$_{0.25}$K$_{0.05}$MnO$_3$

6.5 EDX spectrum of La$_{0.5}$Nd$_{0.2}$Ca$_{0.3}$MnO$_3$ and La$_{0.5}$Nd$_{0.2}$Ca$_{0.25}$K$_{0.05}$MnO$_3$ sintered at 700°C and 1100°C

6.6 SEM micrographs of La$_{0.5}$Nd$_{0.2}$Ca$_{0.3}$MnO$_3$ and La$_{0.5}$Nd$_{0.2}$Ca$_{0.25}$K$_{0.05}$MnO$_3$ sintered at 1100°C

6.7 TEM micrographs of La$_{0.5}$Nd$_{0.2}$Ca$_{0.3}$MnO$_3$ and La$_{0.5}$Nd$_{0.2}$Ca$_{0.25}$K$_{0.05}$MnO$_3$ sintered at 700°C

6.8 Temperature Dependence of the molar magnetic susceptibility (χ_m) for La$_{0.5}$Nd$_{0.2}$Ca$_{0.3}$MnO$_3$
Temperature Dependence of the molar magnetic susceptibility (χ_m) for La$_{0.5}$Nd$_{0.2}$Ca$_{0.25}$K$_{0.05}$MnO$_3$

6.10 $d(\chi_m)/dT$ versus T plot for La$_{0.5}$Nd$_{0.2}$Ca$_{0.3}$MnO$_3$

6.11 $d(\chi_m)/dT$ versus T plot for La$_{0.5}$Nd$_{0.2}$Ca$_{0.25}$K$_{0.05}$MnO$_3$

6.12 Plot of temperature dependent inverse molar magnetic susceptibility (χ_m^{-1}) for the La$_{0.5}$Nd$_{0.2}$Ca$_{0.3}$MnO$_3$

6.13 Plot of temperature dependent inverse molar magnetic susceptibility (χ_m^{-1}) for the La$_{0.5}$Nd$_{0.2}$Ca$_{0.25}$K$_{0.05}$MnO$_3$

6.14 Resistivity (ρ) dependence on temperature (T) for La$_{0.5}$Nd$_{0.2}$Ca$_{0.3}$MnO$_3$ sintered at 800$^\circ$C, 900$^\circ$C and 1100$^\circ$C (Inset shows ρ versus T plot for sample sintered at 700$^\circ$C)

6.15 Resistivity (ρ) dependence on temperature (T) for La$_{0.5}$Nd$_{0.2}$Ca$_{0.25}$K$_{0.05}$MnO$_3$ sintered at 800$^\circ$C, 900$^\circ$C and 1100$^\circ$C (Inset shows ρ versus T plot for sample sintered at 700$^\circ$C)

6.16 Plots of log (ρ/T) versus $1/T$ for La$_{0.5}$Nd$_{0.2}$Ca$_{0.3}$MnO$_3$

6.17 Plots of log (ρ/T) versus $1/T$ for La$_{0.5}$Nd$_{0.2}$Ca$_{0.25}$K$_{0.05}$MnO$_3$