GENERAL REMARKS

1. The 1H or 13C NMR spectra were recorded on a Varian XL-300 (300 or 75 MHz), Brucker Avance DPX 300 (300 or 75 MHz) or a Brucker Avance DRX 500 (500 or 125 MHz) instruments using DMSO-d_6 solvent. Chemical shifts are expressed in δ (ppm) units downfield to internal standard TMS. The 1H or 13C NMR data is expressed using standard notations such as chemical shift, splitting pattern ($J =$ coupling constant in Hz units) for assignment.

2. IR spectra were recorded on Shimadzu IR-408, a Shimadzu FTIR instrument. The spectra were recorded either a thin film in or KBr pellets and expressed in wave number (cm$^{-1}$).

3. Elemental Analysis was performed on a Hosli CH-Analyzer and are within \pm 0.3 of the theoretical percentage.

4. Mass Spectra were recorded on a Shimadzu GC-MS QP 2010A mass spectrometer with an ionization potential of 70 eV.

5. UV/VIS spectra were recorded using a Shimadzu UV/VIS scanning spectrophotometer UV 2101 PC; concentration: 3×10^{-5} M.

6. Melting Points were determined using a Gallenkamp Melting Point Apparatus, Mod. MFB-595 in open capillary tubes and measured in ºC.

7. All reactions were monitored by Thin Layer Chromatography on 0.2 mm silica gel F-254 (Merck) plates using UV light (254 and 366 nm) for detection.

8. After work up, solvents were removed under reduced pressure with Heidolph Rotary Evaporator and re-used by standard purification methods.
9. All reagents were purchased from S. D. Fine, Merck, Acros, Aldrich, Fluka, Loba and Thomas & Becker, and were purified and dried according to the procedures given in literature.