CONTENTS

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>8</td>
</tr>
<tr>
<td>List of Figures</td>
<td>17</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>26</td>
</tr>
</tbody>
</table>

INTRODUCTION

1. INTRODUCTION

2. NEED FOR DRUG ANALYSIS

3. PRACTICAL ASPECTS

 3.1 Stability-indicating assay method (SIAM)

4. REGULATORY ASPECTS

5. TECHNIQUES USED

6. CHROMATOGRAPHIC METHODS

 6.1 Classification of Chromatographic Methods

 6.2 High Performance Liquid Chromatography

 6.3 HPLC Instrumentation

 6.3.1 Mobile phase reservoir, filtering

 6.3.2 Pump

 6.3.3 Injector

 6.3.4 Column

 6.3.4.1 Column Dimensions

 6.3.4.2 Particle Shape

 6.3.4.3 Particle Size

 6.3.4.4 Surface Area

 6.3.4.5 Pore Size

 6.3.4.6 Bonding Type

 6.3.4.7 End capping

 6.3.4.8 Column – packing materials

 6.3.4.1 Bonded phases for HPLC and their abbreviations

 6.3.5 Detector

 6.3.5 Detector

 6.4 Detection

 6.4.1 Spectrophotometric method

 6.4.2 HPLC

 6.4.2.1 UV/Vis detector

 6.4.2.2 Fluorescence detector

 6.4.2.3 Mass spectrometry detector

 6.4.3 Mass spectrometry

 6.4.4 Ion mobility spectrometry

 6.4.5 Atomic spectrometry

 6.5 Stability

 6.5.1 Stability

 6.5.2 Stability

 6.5.3 Stability

 6.5.4 Stability

 6.5.5 Stability

 6.5.6 Stability

 6.5.7 Stability

 6.5.8 Stability

 6.5.9 Stability

 6.5.10 Stability

 6.5.11 Stability

 6.5.12 Stability

 6.5.13 Stability

 6.5.14 Stability

 6.5.15 Stability

 6.5.16 Stability

 6.5.17 Stability

 6.5.18 Stability

 6.5.19 Stability

 6.5.20 Stability

 6.5.21 Stability

 6.5.22 Stability

 6.5.23 Stability

 6.5.24 Stability

 6.5.25 Stability

 6.5.26 Stability

 6.5.27 Stability

 6.5.28 Stability

 6.5.29 Stability

 6.5.30 Stability

 6.5.31 Stability

 6.5.32 Stability

 6.5.33 Stability

 6.5.34 Stability

 6.5.35 Stability

 6.5.36 Stability

 6.5.37 Stability

 6.5.38 Stability

 6.5.39 Stability

 6.5.40 Stability

 6.5.41 Stability

 6.5.42 Stability

 6.5.43 Stability

 6.5.44 Stability

 6.5.45 Stability

 6.5.46 Stability

 6.5.47 Stability

 6.5.48 Stability

 6.5.49 Stability

 6.5.50 Stability

 6.5.51 Stability

 6.5.52 Stability

 6.5.53 Stability

 6.5.54 Stability

 6.5.55 Stability

 6.5.56 Stability

 6.5.57 Stability

 6.5.58 Stability

 6.5.59 Stability

 6.5.60 Stability

 6.5.61 Stability

 6.5.62 Stability

 6.5.63 Stability

 6.5.64 Stability

 6.5.65 Stability

 6.5.66 Stability

 6.5.67 Stability

 6.5.68 Stability

 6.5.69 Stability

 6.5.70 Stability

 6.5.71 Stability

 6.5.72 Stability

 6.5.73 Stability

 6.5.74 Stability

 6.5.75 Stability

 6.5.76 Stability

 6.5.77 Stability

 6.5.78 Stability

 6.5.79 Stability

 6.5.80 Stability

 6.5.81 Stability

 6.5.82 Stability

 6.5.83 Stability

 6.5.84 Stability

 6.5.85 Stability

 6.5.86 Stability

 6.5.87 Stability

 6.5.88 Stability

 6.5.89 Stability

 6.5.90 Stability

 6.5.91 Stability

 6.5.92 Stability
6.3.5.1 Types of Detectors

6.3.6 Data System

6.4 Quantitative analysis in HPLC
6.4.1 External standard method
6.4.2 Internal standard method
6.4.3 Standard addition method

The parameters that are affected by changes in chromatographic conditions
6.5.1 Resolution (Rs)
6.5.2 Capacity Factor (k')
6.5.3 Adjusting capacity factor (k')
6.5.4 Selectivity (α)
6.5.5 Adjusting selectivity (α)
6.5.6 Column efficiency/ Band broadening
6.5.7 Methods of measuring column efficiency (N)
6.5.8 Peak asymmetry factor (As)

7 METHOD DEVELOPMENT - DESIGN OF SEPARATION METHOD
7.1 Degradation studies

8 ANALYTICAL METHOD VALIDATION
8.1 Advantages of Analytical method Validation
8.2 Method validation is required when
8.3 Key parameters of the analytical method validation
8.3.1 Accuracy
8.3.2 Precision (Repeatability and Reproducibility)
8.3.3 Determination of repeatability
8.3.4 Determination of reproducibility
8.3.5 Linearity and range
8.3.6 Limit of Detection and Limit of Quantitation
8.3.6.1 Limit of detection
8.3.6.2 Limit of quantitation
8.3.7 Selectivity and Specificity 71
8.3.8 Robustness and Ruggedness 72
 8.3.8.1 Robustness 72
 8.3.8.2 Ruggedness 72
8.3.9 Stability and System suitability tests 72
 8.3.9.1 System suitability tests (SST) 73

9 THE SPECIFIC AND MAIN OBJECTIVES OF THE PRESENT WORK 74
 9.1 Types of instrumental methods used in the present study 74
 9.2 Instrument use for whole research work 75

10 REFERENCES 82

[Part A]:
Simultaneous determination of Amlodipine besylate, Telmisartan, Hydrochlorothiazide, Atenolol and Losartan potassium in multicomponent pharmaceutical preparations by stability-indicating RP-High performance liquid chromatography

1. INTRODUCTION AND SURVEY OF ANALYTICAL METHODS 86

2. DEVELOPMENT OF STABILITY INDICATING RP-HPLC METHOD 91
 2.1 Materials and Methods 91
 2.2 Equipment’s used 91
 2.3 Chromatographic conditions 91
 2.4 Preparation of Standard, Placebo and Test solution 92
 2.4.1 Preparation of Standard Stock Solutions 92
 2.4.2 Preparation of synthetic mixture 93
 2.4.3 Preparation of Sample solutions 93
 2.4.4 Preparation of Placebo solution 94
 2.5 Stress studies 94
 2.5.1 Preparation of solutions for stress studies 94
 2.5.2 Generation of stress samples 95
 2.6 Method development and Optimization of Chromatographic conditions 96
 2.6.1 Selection of UV wavelength 96
2.6.2 Selection of Column, Mobile phase, column Temperature and Mode of elution

2.6.3 Optimized chromatographic conditions for Assay Method

2.7 Degradation Behaviour

2.7.1 Degradation in acidic solution

2.7.2 Degradation in Basic solution

2.7.3 Degradation in Peroxide (Oxidative degradation)

2.7.4 Degradation in Neutral(Water) solution

2.7.5 Degradation in Photolytic condition

3 ANALYTICAL METHOD VALIDATION

3.1 System suitability

3.2 Specificity

3.3 Precision and Ruggedness (Intermediate precision)

3.3.1 Repeatability

3.3.2 Intermediate precision

3.4 Linearity and range

3.4.1 Linearity

3.4.2 Range

3.5 Accuracy (Recovery)

3.6 Robustness

3.7 Solution stability

3.8 Calculations

4 RESULTS AND DISCUSSION

5. REFERENCES

[Part B]:
Simultaneous determination of Phenylephrine hydrochloride, Paracetamol, Ambroxol hydrochloride, Guaifenesin and Chlorpheniramine maleate in multicomponent pharmaceutical preparations (Tablets) by stability-indicating RP-HPLC.

1. INTRODUCTION AND SURVEY OF ANALYTICAL METHODS
2. DEVELOPMENT OF STABILITY INDICATING RP-HPLC METHOD 172
 2.1 Materials and Methods 172
 2.2 Equipment’s used 172
 2.3 Chromatographic conditions 172
 2.4 Preparation of Standard solution and Test solution 173
 2.4.1 Preparation of Standard Stock Solutions 173
 2.4.2 Preparation of Test solution 174
 2.5 Stress studies 175
 2.5.1 Preparation of solutions for stress studies 175
 2.5.2 Generation of stress samples 175
 2.6 Method development and Optimization of Chromatographic conditions 176
 2.6.1 Selection of UV wavelength 177
 2.6.2 Selection of column, mobile phase, and mode of elution 178
 2.6.3 Optimized chromatographic conditions for Assay Method 182
 2.7 Degradation Behaviour 183
 2.7.1 Degradation in acidic solution 183
 2.7.2 Degradation in Basic solution 186
 2.7.3 Degradation in Peroxide (Oxidative degradation) 188
 2.7.4 Degradation in Neutral(Water) solution 191
 2.7.5 Degradation in Photolytic condition 194

3 ANALYTICAL METHOD VALIDATION 197
 3.1 System suitability 197
 3.2 Specificity 200
 3.3 Precision and Ruggedness (Intermediate precision) 205
 3.3.1 Repeatability 205
 3.3.2 Intermediate precision 207
 3.4 Linearity and range 210
 3.4.1 Linearity 210
 3.4.2 Range 218
 3.5 Accuracy (Recovery) 219
Simultaneous RP-HPLC determination for Assay content of Brompheniramine maleate, Pseudoephedrine hydrochloride and Dextromethorphan hydrobromide in presence of related substances in bulk and in Syrup.

1. INTRODUCTION AND SURVEY OF ANALYTICAL METHODS

2. DEVELOPMENT OF STABILITY INDICATING RP-HPLC METHOD
 2.1 Materials and Methods
 2.2 Equipment’s used
 2.3 Chromatographic conditions
 2.4 Preparation of Standard, Placebo and Test solution
 2.4.1 Preparation of Standard Stock Solutions
 2.4.2 Preparation of Reference solution
 2.4.3 Preparation of Test solution
 2.4.4 Preparation of Placebo solution
 2.4.5 Preparation of Individual identification solutions of impurities
 2.4.6 Test solution spiked with known impurities
 2.4.7 Individual peak Identification stock solution for Maleic acid
 2.5 Stress studies
 2.5.1 Preparation of solutions for stress studies
 2.5.2 Generation of stress samples
 2.6 Method development and Optimization of Chromatographic conditions
 2.6.1 USP assay method for Brompheniramine Maleate and Pseudoephedrine Sulfate Oral Solution
 2.6.2 Optimization of method in present study
 2.6.3 Optimized chromatographic conditions for Assay Method
2.7 Degradation Behaviour

2.7.1 Degradation in acidic solution

2.7.2 Degradation in Basic solution

2.7.3 Degradation in Peroxide (Oxidative degradation)

2.7.4 Degradation in 40°C (Thermal degradation)

2.7.5 Degradation in Photolytic condition

3 ANALYTICAL METHOD VALIDATION

3.1 System suitability

3.2 Specificity

3.3 Precision and Ruggedness (Intermediate precision)

3.3.1 Repeatability

3.3.2 Intermediate precision

3.4 Linearity and range

3.4.1 Linearity

3.4.2 Range

3.5 Accuracy (Recovery)

3.6 Robustness

3.7 Solution stability

3.8 Calculations

4 RESULTS AND DISCUSSION

5 REFERANCES

SUMMARY AND CONCLUSIONS

1. Summary and Conclusions

2. [Part A]

3 [Part B]

4 [Part C]

LIST OF PUBLICATIONS AND PRESENTATIONS

1 List of Presentations

2 List of Publications: Accepted Manuscripts
List of Tables

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Table 1 Techniques used in stability-indicating methods</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Table 2 List of drugs selected for the study</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>[Part A]: Simultaneous determination of Amlodipine besylate, Telmisartan, Hydrochlorothiazide, Atenolol and Losartan potassium in multicomponent pharmaceutical preparations by stability-indicating RP-High performance liquid chromatography**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Table 1 Gradient program for chromatography</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Table 2 Solutions analyzed in UV-Spectrophotometer to finalize the suitable wavelength</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Table 3 Method Optimization data</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Table 4 Peak purity of Atenolol, Hydrochlorothiazide, Telmisartan, Amlodipine and Losartan in Acid hydrolysis sample</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>Table 5 Peak purity of Atenolol, Hydrochlorothiazide, Telmisartan, Amlodipine and Losartan in Alkali hydrolysis sample</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>Table 6 Peak purity of Atenolol, Hydrochlorothiazide, Telmisartan, Amlodipine and Losartan in Oxidation sample</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Table 7 Peak purity of Atenolol, Hydrochlorothiazide, Telmisartan, Amlodipine and Losartan in Neutral hydrolysis sample</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>Table 8 Peak purity of Atenolol, Hydrochlorothiazide, Telmisartan, Amlodipine and Losartan in Photolysis sample</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>Table 9 System suitability – Percentage relative standard deviation for peak area</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>Table 10 System suitability – Percentage relative standard deviation for retention time</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>Table 11 System suitability – Resolution, Symmetry factor and Theoretical</td>
<td>117</td>
</tr>
</tbody>
</table>
plates

Table 12 Retention time of Atenolol, Hydrochlorothiazide, Telmisartan, Amlodipine and Losartan

Table 13 Peak purity of Atenolol, Hydrochlorothiazide, Telmisartan, Amlodipine and Losartan in Standard Solution prepared for Assay determination method

Table 14 Repeatability study for the simultaneous determination of Atenolol, Hydrochlorothiazide, Telmisartan, Amlodipine and Losartan – Day 1

Table 15 Intermediate precision study for the simultaneous determination of Atenolol, Hydrochlorothiazide, Telmisartan, Amlodipine and Losartan – Day 2

Table 16 Comparison of results from Repeatability and Intermediate precision for the assay determination of Atenolol, Hydrochlorothiazide, Telmisartan, Amlodipine and Losartan for Day-1 and Day 2

Table 17 Linearity concentrations prepared for Atenolol in assay method for simultaneous determination of Atenolol, Hydrochlorothiazide, Amlodipine, Telmisartan and Losartan.

Table 18 Linearity study for Atenolol.

Table 19 Linearity concentrations prepared for Hydrochlorothiazide in assay method for simultaneous determination of Atenolol, Hydrochlorothiazide, Amlodipine, Telmisartan and Losartan

Table 20 Linearity study for Hydrochlorothiazide

Table 21 Linearity concentrations prepared for Telmisartan in assay method for simultaneous determination of Atenolol, Hydrochlorothiazide, Amlodipine, Telmisartan and Losartan

Table 22 Linearity study for Telmisartan

Table 23 Linearity concentrations prepared for Amlodipine in assay method for simultaneous determination of Atenolol, Hydrochlorothiazide, Amlodipine, Telmisartan and Losartan
Table 24 Linearity study for Amlodipine
Table 25 Linearity concentrations prepared for Losartan in assay method for simultaneous determination of Atenolol, Hydrochlorothiazide, Amlodipine, Telmisartan and Losartan
Table 26 Linearity study for Losartan
Table 27 Summary of Linearity and range results in assay method for simultaneous determination of Atenolol, Hydrochlorothiazide, Amlodipine, Telmisartan and Losartan
Table 28 Accuracy concentration prepared for Atenolol in assay method for simultaneous determination of Atenolol, Hydrochlorothiazide, Amlodipine, Telmisartan and Losartan
Table 29 Accuracy (Recovery) study for Atenolol
Table 30 Accuracy concentration prepared for Hydrochlorothiazide in assay method for simultaneous determination of Atenolol, Hydrochlorothiazide, Amlodipine, Telmisartan and Losartan
Table 31 Accuracy (Recovery) study for Hydrochlorothiazide
Table 32 Accuracy concentration prepared for Telmisartan in assay method for simultaneous determination of Atenolol, Hydrochlorothiazide, Amlodipine, Telmisartan and Losartan
Table 33 Accuracy (Recovery) study for Telmisartan
Table 34 Accuracy concentration prepared for Amlodipine in assay method for simultaneous determination of Atenolol, Hydrochlorothiazide, Amlodipine, Telmisartan and Losartan
Table 35 Accuracy (Recovery) study for Amlodipine
Table 36 Accuracy concentration prepared for Losartan in assay method for simultaneous determination of Atenolol, Hydrochlorothiazide, Amlodipine, Telmisartan and Losartan
Table 37 Accuracy (Recovery) study for Losartan
Table 38 Summary of Accuracy (Recovery) results obtained from spiking in assay method for simultaneous determination of Atenolol,
Hydrochlorothiazide, Amlodipine, Telmisartan and Losartan

Table 39 The parameters changed to check the influence of variation on Assay method

Table 40 Study of Robustness in the Assay method

Table 41 Solution stability of Reference solution in assay method for simultaneous determination of Atenolol, Hydrochlorothiazide, Amlodipine, Telmisartan and Losartan

Table 42 Solution stability of synthetic mixture – test solution in assay method for simultaneous determination of Atenolol, Hydrochlorothiazide, Amlodipine, Telmisartan and Losartan

Table 43 Summary of analytical method validation

[Part B]:

Simultaneous determination of Phenylephrine hydrochloride, Paracetamol, Ambroxol hydrochloride, Guaifenesin and Chlorpheniramine maleate in multicomponent pharmaceutical preparations (Tablets) by stability-indicating RP-HPLC.

Table 1 Comparison of the performance characteristics of the present method with the published methods

Table 2 Gradient program for chromatography

Table 3 Solutions analyzed in UV-Spectrophotometer to finalize the suitable wavelength for analysis

Table 4 Method Optimization data

Table 5 Peak purity of Phenylephrine, Paracetamol, Guaifenesin, Ambroxol and Chlorpheniramine in Acid hydrolysis sample

Table 6 Peak purity of Phenylephrine, Paracetamol, Guaifenesin, Ambroxol and Chlorpheniramine in Alkali hydrolysis sample

Table 7 Peak purity of Phenylephrine, Paracetamol, Guaifenesin, Ambroxol and Chlorpheniramine in Oxidation sample

Table 8 Peak purity of Phenylephrine, Paracetamol, Guaifenesin, Ambroxol and Chlorpheniramine in Neutral hydrolysis sample
Table 9 Peak purity of Phenylephrine, Paracetamol, Guaifenesin, Ambroxol, and Chlorpheniramine in Photolysis sample 198
Table 10 System suitability – Percentage relative standard deviation for peak area’s and retention time 198
Table 11 System suitability – Resolution, Symmetry factor and Theoretical plates 199
Table 12 Retention time of Phenylephrine, Paracetamol, Guaifenesin, Ambroxol, and Chlorpheniramine 204
Table 13 Peak purity of Phenylephrine, Paracetamol, Guaifenesin, Ambroxol, and Chlorpheniramine in Standard Solution prepared for Assay determination method 204
Table 14 Repeatability study – Day 1 206
Table 15 Intermediate precision study – Day 2 208
Table 16 Comparison of results from Repeatability and Intermediate precision for the assay for Day-1 and Day 2 209
Table 17 Linearity concentrations prepared for Phenylephrine hydrochloride in assay method for simultaneous determination of Phenylephrine hydrochloride, Paracetamol, Ambroxol hydrochloride, Guaifenesin and Chlorpheniramine maleate 211
Table 18 Linearity study for Phenylephrine 211
Table 19 Linearity concentrations prepared for Paracetamol in assay method for simultaneous determination of Phenylephrine hydrochloride, Paracetamol, Ambroxol hydrochloride, Guaifenesin and Chlorpheniramine maleate 212
Table 20 Linearity study for Paracetamol 212
Table 21 Linearity concentrations prepared for Guaifenesin in assay method for simultaneous determination of Phenylephrine hydrochloride, Paracetamol, Ambroxol hydrochloride, Guaifenesin and Chlorpheniramine maleate 213
Table 22 Linearity study for Guaifenesin 213
Table 23 Linearity concentrations prepared for Ambroxol hydrochloride in assay method for simultaneous determination of Phenylephrine hydrochloride, Paracetamol, Ambroxol hydrochloride, Guaifenesin and Chlorpheniramine maleate

Table 24 Linearity study for Ambroxol

Table 25 Linearity concentrations prepared for Chlorpheniramine maleate in assay method for simultaneous determination of Phenylephrine hydrochloride, Paracetamol, Ambroxol hydrochloride, Guaifenesin and Chlorpheniramine maleate.

Table 26 Linearity study for Chlorpheniramine

Table 27 Summary of Linearity and range results in assay method for simultaneous determination of Phenylephrine hydrochloride, Paracetamol, Ambroxol hydrochloride, Guaifenesin and Chlorpheniramine maleate

Table 28 Accuracy concentration prepared for all actives in assay method for simultaneous determination of Phenylephrine hydrochloride, Paracetamol, Ambroxol hydrochloride, Guaifenesin and Chlorpheniramine maleate.

Table 29 Accuracy (recovery) of Phenylephrine

Table 30 Accuracy (recovery) of Paracetamol

Table 31 Accuracy (recovery) of Guaifenesin

Table 32 Accuracy (recovery) of Ambroxol

Table 33 Accuracy (recovery) of Chlorpheniramine

Table 34 Summary of Accuracy (Recovery) results obtained from spiking in assay method for simultaneous determination of Phenylephrine hydrochloride, Paracetamol, Ambroxol hydrochloride, Guaifenesin and Chlorpheniramine maleate.

Table 35 The parameters changed to check the influence of variation on Assay method

Table 36 Study of Robustness of the method for the Assay method for
simultaneous determination of Phenylephrine hydrochloride, Paracetamol, Ambroxol hydrochloride, Guaifenesin and Chlorpheniramine maleate

Table 37 Solution stability of Test solution in the assay method for simultaneous determination of Phenylephrine hydrochloride, Paracetamol, Ambroxol hydrochloride, Guaifenesin and Chlorpheniramine maleate.

Table 38 Solution stability of reference solution in assay method for simultaneous determination of Phenylephrine hydrochloride, Paracetamol, Ambroxol hydrochloride, Guaifenesin and Chlorpheniramine maleate.

Table 39 Summary of analytical method validation

[Part C] :

Simultaneous RP-HPLC determination for Assay content of Brompheniramine maleate, Pseudoephedrine hydrochloride and Dextromethorphan hydrobromide in presence of related substances in bulk and in Syrup.

Table 1 Comparison of the performance characteristics of the present method with the published methods

Table 2 Structures of known impurities of Pseudoephedrine hydrochloride, Brompheniramine maleate and Dextromethorphan

Table 3 Peak purity of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride in Acid hydrolysis sample

Table 4 Peak purity of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride in Alkali hydrolysis sample

Table 5 Peak purity of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride in Oxidation sample

Table 6 Peak purity of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride in Thermal degradation sample
Table 7 Peak purity of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride in Photolysis sample
Table 8 System suitability – Percentage relative standard deviation for peak area
Table 9 System suitability – Percentage relative standard deviation for retention time
Table 10 System suitability – Symmetry factor and Theoretical plates
Table 11 Retention time of Brompheniramine maleate, Pseudoephedrine hydrochloride and Dextromethorphan hydrobromide in reference Solution prepared for Assay determination method
Table 12 Peak purity of Brompheniramine maleate, Pseudoephedrine hydrochloride and Dextromethorphan hydrobromide in reference Solution prepared for Assay determination method
Table 13 Repeatability study – Day 1
Table 14 Intermediate precision study – Day 2
Table 15 Comparison of results from Repeatability and Intermediate precision for the assay determination of for the simultaneous determination of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride for Day-1 and Day 2
Table 16 Assay – Linearity solutions
Table 17 Linearity study for Pseudoephedrine in assay method for simultaneous determination of Dextromethorphan hydrobromide, Brompheniramine maleate, and Pseudoephedrine hydrochloride
Table 18 Linearity study for Brompheniramine in assay method for simultaneous determination of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride
Table 19 Linearity study for Dextromethorphan in assay method for simultaneous determination of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride
Table 20 Summary of Linearity and range results in assay method for
simultaneous determination of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride

Table 21 Accuracy study for Pseudoephedrine in assay method for simultaneous determination of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride

Table 22 Accuracy study for Brompheniramine in assay method for simultaneous determination of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride

Table 23 Accuracy study for Dextromethorphan in assay method for simultaneous determination of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride

Table 24 Summary of Accuracy (Recovery) results obtained from spiking in assay method for simultaneous determination of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride

Table 25 The parameters changed to check the influence of variation

Table 26 Study of Robustness of the method for the Assay method for simultaneous determination of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride

Table 27 Solution stability of Reference solution used for the assay determination of in assay method for simultaneous determination of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride

Table 28 Solution stability of Test solution used for the assay determination of in assay method for simultaneous determination of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride

Table 29 Summary of analytical method validation
List of Figures

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>Figure 1</td>
<td>Chromatographic methods - Classification</td>
<td>37</td>
</tr>
<tr>
<td>Figure 2</td>
<td>HPLC</td>
<td>38</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Schematic diagram of HPLC</td>
<td>41</td>
</tr>
<tr>
<td>Figure 4</td>
<td>HPLC Pump</td>
<td>43</td>
</tr>
<tr>
<td>Figure 5</td>
<td>HPLC Injectors</td>
<td>44</td>
</tr>
<tr>
<td>Figure 6</td>
<td>The shapes of spherical and irregular particles</td>
<td>46</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Different particle sizes of HPLC column packing</td>
<td>46</td>
</tr>
<tr>
<td>Figure 8</td>
<td>The schematic diagram of surface area</td>
<td>46</td>
</tr>
<tr>
<td>Figure 9</td>
<td>A representative diagram of pore size</td>
<td>47</td>
</tr>
<tr>
<td>Figure 10</td>
<td>A representative diagram for carbon load</td>
<td>47</td>
</tr>
<tr>
<td>Figure 11</td>
<td>A representative diagram for column</td>
<td>48</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Different peak shapes are observed during method development in</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>HPLC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Part A]:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>**Simultaneous determination of Amlodipine besylate, Telmisartan,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>**Hydrochlorothiazide, Atenolol and Losartan potassium in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>multicomponent pharmaceutical preparations by stability-indicating</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP-High performance liquid chromatography</td>
<td></td>
</tr>
<tr>
<td>Figure 1</td>
<td>Chemical structure of Amlodipine, Telmisartan, Hydrochlorothiazide,</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Atenolol and Losartan</td>
<td></td>
</tr>
<tr>
<td>Figure 2</td>
<td>Overlapping UV absorption spectra`s of Amlodipine, Telmisartan,</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Hydrochlorothiazide, Atenolol and Losartan</td>
<td></td>
</tr>
<tr>
<td>Figure 3</td>
<td>Typical RP-HPLC chromatogram of acid hydrolysis</td>
<td>102</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Peak purity plot of Acid hydrolysis for Atenolol</td>
<td>102</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Peak purity plot of Acid hydrolysis for Hydrochlorothiazide</td>
<td>103</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Peak purity plot of Acid hydrolysis for Amlodipine</td>
<td>103</td>
</tr>
</tbody>
</table>
Figure 3.4 Peak purity plot of Acid hydrolysis for Telmisartan 103
Figure 3.5 Peak purity plot of Acid hydrolysis for Losartan 104
Figure 4 Typical RP-HPLC chromatogram of alkali hydrolysis 105
Figure 4.1 Peak purity plot of alkali hydrolysis for Atenolol 105
Figure 4.2 Peak purity plot of alkali hydrolysis for Hydrochlorothiazide 105
Figure 4.3 Peak purity plot of alkali hydrolysis for Telmisartan 106
Figure 4.4 Peak purity plot of alkali hydrolysis for Amlodipine 106
Figure 4.5 Peak purity plot of Alkali hydrolysis for Losartan 106
Figure 5 Typical RP-HPLC chromatogram of oxidation 107
Figure 5.1 Peak purity plot of oxidative degradation for Atenolol 108
Figure 5.2 Peak purity plot of oxidative degradation for Hydrochlorothiazide 108
Figure 5.3 Peak purity plot of oxidative degradation for Telmisartan 108
Figure 5.4 Peak purity plot of oxidative degradation for Amlodipine 109
Figure 5.5 Peak purity plot of oxidative degradation for Losartan 109
Figure 6 Typical RP-HPLC chromatogram of neutral hydrolysis 110
Figure 6.1 Peak purity plot of neutral hydrolysis for Atenolol 110
Figure 6.2 Peak purity plot of neutral hydrolysis for Hydrochlorothiazide 111
Figure 6.3 Peak purity plot of neutral hydrolysis for Telmisartan 111
Figure 6.4 Peak purity plot of neutral hydrolysis for Amlodipine 111
Figure 6.5 Peak purity plot of neutral hydrolysis for Losartan 112
Figure 7 Typical RP-HPLC chromatogram of photolysis 113
Figure 7.1 Peak purity plot of photolysis for Atenolol 113
Figure 7.2 Peak purity plot of photolysis for Hydrochlorothiazide 113
Figure 7.3 Peak purity plot of photolysis for Amlodipine 114
Figure 7.4 Peak purity plot of photolysis for Telmisartan 114
Figure 7.5 Peak purity plot of photolysis for Losartan 114
 A typical representative chromatogram of Blank solution for the study of specificity in simultaneous determination of Amlodipine, Telmisartan, Hydrochlorothiazide, Atenolol and Losartan
Figure 8 A typical representative chromatogram of Atenolol for the study of 119
specificity in simultaneous determination of Amlodipine, Telmisartan, Hydrochlorothiazide, Atenolol and Losartan

A typical representative chromatogram of Hydrochlorothiazide for the study of specificity in simultaneous determination of Amlodipine, Telmisartan, Hydrochlorothiazide, Atenolol and Losartan

A typical representative chromatogram of Telmisartan for the study of specificity in simultaneous determination of Amlodipine, Telmisartan, Hydrochlorothiazide, Atenolol and Losartan

A typical representative chromatogram of Amlodipine for the study of specificity in simultaneous determination of Amlodipine, Telmisartan, Hydrochlorothiazide, Atenolol and Losartan

A typical representative chromatogram of Losartan for the study of specificity in simultaneous determination of Amlodipine, Telmisartan, Hydrochlorothiazide, Atenolol and Losartan

A typical representative chromatogram of Placebo for the study of specificity in simultaneous determination of Amlodipine, Telmisartan, Hydrochlorothiazide, Atenolol and Losartan

A typical representative chromatogram of Standard Solution for the study of specificity in simultaneous determination of Amlodipine, Telmisartan, Hydrochlorothiazide, Atenolol and Losartan

A typical representative chromatogram of Synthetic mixture for the study of specificity in simultaneous determination of Amlodipine, Telmisartan, Hydrochlorothiazide, Atenolol and Losartan

Calibration curves of Atenolol, Hydrochlorothiazide, Telmisartan, Amlodipine and Losartan showing linearity
Simultaneous determination of Phenylephrine hydrochloride, Paracetamol, Ambroxol hydrochloride, Guaifenesin and Chlorpheniramine maleate in multicomponent pharmaceutical preparations (tablets) by stability-indicating RP-HPLC.

Figure 1: Chemical structure of Ambroxol hydrochloride, Guaifenesin, Paracetamol, Phenylephrine hydrochloride and Chlorpheniramine maleate

Figure 2: Overlapping UV absorption spectra’s of Ambroxol hydrochloride, Guaifenesin, Paracetamol, Phenylephrine hydrochloride and Chlorpheniramine maleate

Figure 3: Typical RP-HPLC chromatogram of acid hydrolysis

Figure 3.1: Peak purity plot of Acid hydrolysis for Phenylephrine

Figure 3.2: Peak purity plot of Acid hydrolysis for Paracetamol

Figure 3.3: Peak purity plot of Acid hydrolysis for Guaifenesin

Figure 3.4: Peak purity plot of Acid hydrolysis for Ambroxol

Figure 3.5: Peak purity plot of Acid hydrolysis for Chlorpheniramine

Figure 4: Typical RP-HPLC chromatogram of alkali hydrolysis

Figure 4.1: Peak purity plot of alkali hydrolysis for Phenylephrine

Figure 4.2: Peak purity plot of alkali hydrolysis for Paracetamol

Figure 4.3: Peak purity plot of alkali hydrolysis for Guaifenesin

Figure 4.4: Peak purity plot of alkali hydrolysis for Ambroxol

Figure 4.5: Peak purity plot of Alkali hydrolysis for Chlorpheniramine

Figure 5: Typical RP-HPLC chromatogram of oxidation

Figure 5.1: Peak purity plot of oxidative degradation for Phenylephrine

Figure 5.2: Peak purity plot of oxidative degradation for Paracetamol

Figure 5.3: Peak purity plot of oxidative degradation for Guaifenesin

Figure 5.4: Peak purity plot of oxidative degradation for Ambroxol

Figure 5.5: Peak purity plot of oxidative degradation for Chlorpheniramine

Figure 6: Typical RP-HPLC chromatogram of neutral hydrolysis
Figure 6.1 Peak purity plot of neutral hydrolysis for Phenylephrine 192
Figure 6.2 Peak purity plot of neutral hydrolysis for Paracetamol 192
Figure 6.3 Peak purity plot of neutral hydrolysis for Guaifenesin 192
Figure 6.4 Peak purity plot of neutral hydrolysis for Ambroxol 193
Figure 6.5 Peak purity plot of neutral hydrolysis for Chlorpheniramine 193
Figure 7 Typical RP-HPLC chromatogram of photolysis 194
Figure 7.1 Peak purity plot of photolysis for Phenylephrine 194
Figure 7.2 Peak purity plot of photolysis for Paracetamol 195
Figure 7.3 Peak purity plot of photolysis for Guaifenesin 195
Figure 7.4 Peak purity plot of photolysis for Ambroxol 195
Figure 7.5 Peak purity plot of photolysis for Chlorpheniramine 196

Figure 8 A typical representative chromatogram of Blank solution for the study of specificity in simultaneous determination of Phenylephrine hydrochloride, Paracetamol, Ambroxol hydrochloride, Guaifenesin and Chlorpheniramine maleate 200

Figure 9 A typical representative chromatogram of Phenylephrine for the study of specificity in simultaneous determination of Phenylephrine hydrochloride, Paracetamol, Ambroxol hydrochloride, Guaifenesin and Chlorpheniramine maleate. 201

Figure 10 A typical representative chromatogram of Paracetamol for the study of specificity in simultaneous determination of Phenylephrine hydrochloride, Paracetamol, Ambroxol hydrochloride, Guaifenesin and Chlorpheniramine maleate. 201

Figure 11 A typical representative chromatogram of Guaifenesin for the study of specificity in simultaneous determination of Phenylephrine hydrochloride, Paracetamol, Ambroxol hydrochloride, Guaifenesin and Chlorpheniramine maleate 202

Figure 12 A typical representative chromatogram of Ambroxol for the study of specificity in simultaneous determination of Phenylephrine hydrochloride, Paracetamol, Ambroxol hydrochloride, Guaifenesin 202
and Chlorpheniramine maleate

Figure 13
A typical representative chromatogram of Chlorpheniramine maleate for the study of specificity in simultaneous determination of Phenylephrine hydrochloride, Paracetamol, Ambroxol hydrochloride, Guaifenesin and Chlorpheniramine maleate

Figure 14
A typical representative chromatogram of Standard Solution for the study of specificity in simultaneous determination of Phenylephrine hydrochloride, Paracetamol, Ambroxol hydrochloride, Guaifenesin and Chlorpheniramine maleate.

Figure 15
A typical representative chromatogram of test solution for the study of specificity in simultaneous determination of Phenylephrine hydrochloride, Paracetamol, Ambroxol hydrochloride, Guaifenesin and Chlorpheniramine maleate.

Figure 16
Calibration curves for Phenylephrine hydrochloride, Paracetamol, Guaifenesin, Ambroxol hydrochloride and Chlorpheniramine maleate in linearity

[Part C]:

Simultaneous RP-HPLC determination for Assay content of Brompheniramine maleate, Pseudoephedrine hydrochloride and Dextromethorphan hydrobromide in presence of related substances in bulk and in Syrup.

Figure 1
Chemical structure of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride

Figure 2
Typical RP-HPLC chromatogram of acid hydrolysis

Figure 2.1 Peak purity scan of Acid hydrolysis for Pseudoephedrine

Figure 2.2 Peak purity scan of Acid hydrolysis for Brompheniramine

Figure 2.3 Peak purity scan of Acid hydrolysis for Dextromethorphan

Figure 3
Typical RP-HPLC chromatogram of alkali hydrolysis

Figure 3.1 Peak purity scan of alkali hydrolysis for Pseudoephedrine

Figure 3.2 Peak purity scan of alkali hydrolysis for Brompheniramine
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>Peak purity scan of alkali hydrolysis for Dextromethorphan</td>
<td>258</td>
</tr>
<tr>
<td>4</td>
<td>Typical RP-HPLC chromatogram of oxidation</td>
<td>259</td>
</tr>
<tr>
<td>4.1</td>
<td>Peak purity scan of oxidative degradation for Pseudoephedrine</td>
<td>260</td>
</tr>
<tr>
<td>4.2</td>
<td>Peak purity scan of oxidative degradation for Brompheniramine</td>
<td>260</td>
</tr>
<tr>
<td>4.3</td>
<td>Peak purity scan of oxidative degradation for Dextromethorphan</td>
<td>260</td>
</tr>
<tr>
<td>5</td>
<td>Typical RP-HPLC chromatogram of thermal degradation</td>
<td>261</td>
</tr>
<tr>
<td>5.1</td>
<td>Peak purity scan of thermal degradation for Pseudoephedrine</td>
<td>262</td>
</tr>
<tr>
<td>5.2</td>
<td>Peak purity scan of thermal degradation for Brompheniramine</td>
<td>262</td>
</tr>
<tr>
<td>5.3</td>
<td>Peak purity scan of thermal degradation for Dextromethorphan</td>
<td>262</td>
</tr>
<tr>
<td>6</td>
<td>Typical RP-HPLC chromatogram of photolysis</td>
<td>263</td>
</tr>
<tr>
<td>6.1</td>
<td>Peak purity scan of photolysis for Pseudoephedrine</td>
<td>264</td>
</tr>
<tr>
<td>6.2</td>
<td>Peak purity scan of photolysis for Brompheniramine</td>
<td>264</td>
</tr>
<tr>
<td>6.3</td>
<td>Peak purity scan of photolysis for Dextromethorphan</td>
<td>264</td>
</tr>
<tr>
<td>7</td>
<td>A typical representative chromatogram of Blank solution for the study of specificity in simultaneous determination of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride</td>
<td>269</td>
</tr>
<tr>
<td>8</td>
<td>A typical representative chromatogram of Pseudoephedrine for the study of specificity in simultaneous determination of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride</td>
<td>269</td>
</tr>
<tr>
<td>9</td>
<td>A typical representative chromatogram of Brompheniramine for the study of specificity in simultaneous determination of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride</td>
<td>270</td>
</tr>
<tr>
<td>10</td>
<td>A typical representative chromatogram of Dextromethorphan for the study of specificity in simultaneous determination of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride</td>
<td>270</td>
</tr>
<tr>
<td>11</td>
<td>A typical representative chromatogram of Benzaldehyde for the study</td>
<td>271</td>
</tr>
</tbody>
</table>
of specificity in simultaneous determination of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride

Figure 12
A typical representative chromatogram of Ephedrine for the study of specificity in simultaneous determination of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride

Figure 13
A typical representative chromatogram of Pheniramine for the study of specificity in simultaneous determination of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride

Figure 14
A typical representative chromatogram of Chlorpheniramine for the study of specificity in simultaneous determination of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride

Figure 15
A typical representative chromatogram of Dextromethorphan Imp-A for the study of specificity in simultaneous determination of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride

Figure 16
A typical representative chromatogram of Maleic acid for the study of specificity in simultaneous determination of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride

Figure 17
A typical representative chromatogram of Placebo for the study of specificity in simultaneous determination of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride

Figure 18
A typical representative chromatogram of Reference Solution for the study of specificity in simultaneous determination of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride
Pseudoephedrine hydrochloride

A typical representative chromatogram of Test solution for the study of specificity in simultaneous determination of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride

A typical representative chromatogram of Test solution spiked with known impurities for the study of specificity in simultaneous determination of Dextromethorphan hydrobromide, Brompheniramine maleate and Pseudoephedrine hydrochloride

Figure 19

Figure 20

Figure 21 Peak purity scan of Pseudoephedrine in Reference solution

Figure 22 Peak purity scan of Brompheniramine in Reference solution

Figure 23 Peak purity scan of Dextromethorphan in Reference solution

Figure 24 Brompheniramine maleate and Pseudoephedrine hydrochloride showing linearity

Calibration curves for Dextromethorphan hydrobromide,