Contents

Chapter-I: The hypoxic tumour microenvironment acts as a critical factor in tumour angiogenesis and tumour aggressiveness

(General Introduction & Review of Literature)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. General Introduction</td>
<td>1-6</td>
</tr>
<tr>
<td>1.1.1. Cancer</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2. Cancer causing risk factors</td>
<td>2</td>
</tr>
<tr>
<td>1.1.3. Classification of cancers</td>
<td>4</td>
</tr>
<tr>
<td>1.1.4. The hallmarks of cancer</td>
<td>5</td>
</tr>
<tr>
<td>1.1.5. Targeting cancer hallmarks for cancer prevention</td>
<td>6</td>
</tr>
<tr>
<td>1.2. Review of Literature</td>
<td>7-29</td>
</tr>
<tr>
<td>1.2.1. Tumour angiogenesis</td>
<td>7</td>
</tr>
<tr>
<td>1.2.2. Insufficient angiogenesis prevents cancer proliferation</td>
<td>8</td>
</tr>
<tr>
<td>1.2.3. Tumour microenvironment</td>
<td>9</td>
</tr>
<tr>
<td>1.2.4. Tumour hypoxia is an important phenomenon of solid tumours</td>
<td>11</td>
</tr>
<tr>
<td>1.2.5. Hypoxia Inducible Factor-1</td>
<td>12</td>
</tr>
<tr>
<td>1.2.6. Hypoxia influences the synthesis of HIF-1α</td>
<td>14</td>
</tr>
<tr>
<td>1.2.7. The Regulation of HIF-1α at protein level</td>
<td>15</td>
</tr>
<tr>
<td>1.2.8. Hypoxia accelerates the HIF-1α nuclear accumulation and transcripational activation</td>
<td>16</td>
</tr>
<tr>
<td>1.2.9. Major HIF-1 dependant angiogenic factors</td>
<td>18</td>
</tr>
<tr>
<td>1.2.10. Role of HIF-1 in tumour progression and patient mortality</td>
<td>20</td>
</tr>
<tr>
<td>1.2.11. The role of p53 in HIF-1α decrease and apoptosis</td>
<td>22</td>
</tr>
<tr>
<td>1.2.12. HIF-1 inhibitors targeting hypoxia signaling</td>
<td>22</td>
</tr>
<tr>
<td>1.2.13. Possible events for targeting HIF-1α activity inhibition</td>
<td>24</td>
</tr>
<tr>
<td>1.2.14. Benzophenone, Benzimidazole and Thiazole as a source for cancer therapeutics</td>
<td>25</td>
</tr>
<tr>
<td>1.2.15. Objectives of the current research</td>
<td>29</td>
</tr>
</tbody>
</table>
Chapter-II: A Tumoural Angiogenic Gateway Blocker, BP-1B Represses the HIF-1α Nuclear Translocation and Its Target Gene Activation against Neoplastic Progression

2. Introduction

2.2. Materials and Methods

2.2.1. Materials

2.2.2. The effect of BP-1B on cancer proliferation under in-vitro condition

2.2.3. BP-1B efficacy on in-vitro tumour hypoxic conditions

2.2.4. In-vitro anti-angiogenic potency of BP-1B on recombinant VEGF_{165} induced angiogenesis

2.2.5. Animals and ethics

2.2.6. In-vivo efficacy of BP-1B on recombinant VEGF_{165} induced neoangiogenesis

2.2.7. Tumour models and treatment

2.2.8. Evaluation of molecular mechanism of BP-1B against the tumour angiogenesis

2.2.9. Molecular interaction of BP-1B with HIF-1α by a molecular algorithmic (in-silico) studies

2.2.10. Statistical analysis

2.3. Results

2.3.1. BP-1B exposes tumour-specific cytotoxic action against various cancer types

2.3.2. BP-1B abridges the rVEGF_{165} induced endothelial cell migration and neovessel formation in non-tumourigenic condition

2.3.3. BP-1B confines the physiological neovascularization process under non-tumourigenic condition

2.3.4. Acute toxicity studies
2.3.5. BP-1B reticence the pathological neovascularization in-vivo under tumourigenic condition 75
2.3.6. BP-1B attenuates the nuclear translocation of HIF-1α. 78
2.3.7. BP-1B interacts with C-TAD domain of HIF-1α by binding with threonine amino acid 81
2.3.8. BP-1B counteracts the HIF-1α targeted angiogenic factors expressions at in-vitro level 83
2.3.9. BP-1B restrains the neoplastic growth of solid tumour 86
2.3.10. BP-1B exhibits no toxicological effect in solid tumour bearing animals 88
2.3.11. BP-1B impairs HIF-1 signaling by blocking nuclear import of HIF-1α in in-vivo 90

2.4. Discussion 93-97

2.5. Summary 98

Chapter-III: BP-1T, An Antiangiogenic Benzophenone-Thiazole Pharmacophore, Counteracts HIF-1 Signaling Through p53/MDM2 Mediated HIF-1α Proteasomal Degradation

3. Introduction 99-101

3.2. Materials and Methods 102-121

3.2.1. Materials 102

3.2.2. The effect of BP-1T on cancer proliferation under in-vitro condition 104

3.2.3. BP-1T efficacy on in-vitro tumour hypoxic conditions 105

3.2.4. The effect of BP-1T on human endothelial cells 107

3.2.5. The effect of BP-1T on rVEGF165 induced angiogenesis under non- tumourigenic condition 108

3.2.6. Tumour model and treatment 110

3.2.7. Evaluation of molecular mechanism of BP-1T against the tumour angiogenesis 114

3.2.8. Molecular interaction of BP-1T with MDM2 by a molecular algorithmic (in-silico) studies 120

3.2.9. Statistical analysis 121
3.3. Results

3.3.1. BP-1T exhibits potent cytotoxic activity with long term effect

3.3.2. BP-1T inhibits the neovessel formation in non-tumourigenic angiogenesis models

3.3.3. Acute toxicity studies

3.3.4. BP-1T shows the antiangiogenesis effect in tumourigenic angiogenesis models

3.3.5. BP-1T mediates HIF-1α inhibition by p53/MDM2 proteasomal pathway

3.3.6. BP-1T interacts with p53 binding pocket domain of MDM2 by binding with serine acid

3.3.7. BP-1T induces p53 mediated apoptosis in p53 (WT) expressing cells

3.3.8. BP-1T counteracts the HIF-1α targeted gene expressions

3.3.9. BP-1T regresses solid tumour progression targeting angiogenesis in-vivo

3.3.10. BP-1T exhibits no toxicological effect in solid tumour bearing animals

3.3.11. BP-1T inhibits the HIF-1α signaling in hypoxic solid tumour in-vivo

3.4. Discussion

3.5. Summary

4.0. General Summary

5.0. References

6.0. Annexure-I

7.0. Annexure-II