TABLES IN ANNEXURE

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table A1</td>
<td>Weather data of year 2011.</td>
<td>204</td>
</tr>
<tr>
<td>Table A2</td>
<td>Weather data of year 2012.</td>
<td>204</td>
</tr>
<tr>
<td>Table A3</td>
<td>Weather data of year 2013.</td>
<td>205</td>
</tr>
<tr>
<td>Table A4</td>
<td>Weather data of year 2014.</td>
<td>205</td>
</tr>
<tr>
<td>Table A5</td>
<td>Weather data of year 2015.</td>
<td>206</td>
</tr>
<tr>
<td>Table B1</td>
<td>Temperature and relative humidity inside polyhouse during study period in 2011.</td>
<td>207</td>
</tr>
<tr>
<td>Table B2</td>
<td>Temperature and relative humidity inside polyhouse during study period in 2012.</td>
<td>207</td>
</tr>
<tr>
<td>Table B3</td>
<td>Temperature and relative humidity inside polyhouse during study period in 2013.</td>
<td>208</td>
</tr>
<tr>
<td>Table B4</td>
<td>Temperature and relative humidity inside polyhouse during study period in 2014.</td>
<td>208</td>
</tr>
<tr>
<td>Table B5</td>
<td>Temperature and relative humidity inside polyhouse during study period in 2015.</td>
<td>209</td>
</tr>
<tr>
<td>Table C1</td>
<td>Analysis of variance for the effect of mode of application, plant growth regulators and their interaction on percent sprouting of Taxus baccata stem cutting.</td>
<td>210</td>
</tr>
<tr>
<td>Table C2</td>
<td>Analysis of variance for the effect of mode of application, plant growth regulators and their interaction on percent survival of Taxus baccata stem cutting.</td>
<td>210</td>
</tr>
<tr>
<td>Table C3</td>
<td>Analysis of variance for the effect of mode of application, plant growth regulators and their interaction on percent rooting of Taxus baccata stem cutting.</td>
<td>211</td>
</tr>
<tr>
<td>Table C4</td>
<td>Analysis of variance for the effect mode of application, plant growth regulators and their interaction on mean root number per cutting of Taxus baccata.</td>
<td>211</td>
</tr>
<tr>
<td>Table C5</td>
<td>Analysis of variance for the effect of mode of application, plant growth regulators and their interaction on mean root length per cutting of Taxus baccata.</td>
<td>212</td>
</tr>
<tr>
<td>Table C6</td>
<td>Analysis of variance for the effect of Diameter of cutting, plant growth regulators, concentration of PGR and their interaction on percent sprouted of Taxus baccata stem cutting.</td>
<td>212</td>
</tr>
<tr>
<td>Table C7</td>
<td>Analysis of variance for the effect of Diameter of cutting, plant growth regulators, concentration of PGR and their interaction on percent survival of Taxus baccata stem cutting.</td>
<td>213</td>
</tr>
<tr>
<td>Table C8</td>
<td>Analysis of variance for the effect of Diameter of cutting, Taxus baccata.</td>
<td>213</td>
</tr>
</tbody>
</table>
plant growth regulators, concentration of PGR and their interaction on percent rooted of *Taxus baccata* stem cutting.

Table C9
Analysis of variance for the effect of Diameter of cutting, plant growth regulators, concentration of PGR and their interaction on number of root per cuttings of *Taxus baccata* stem cutting.

Table C10
Analysis of variance for the effect of Diameter of cutting, plant growth regulators, concentration of PGR and their interaction on root length per cutting of *Taxus baccata* stem cutting.

Table C11
Analysis of variance for the effect of clone, physiological age of shoot, IBA and their interaction on percent sprouting of *Taxus baccata* stem cutting.

Table C12
Analysis of variance for the effect of clone, physiological age of shoot, IBA and their interaction on percent survival of *Taxus baccata* stem cutting.

Table C13
Analysis of variance for the effect of clone, physiological age of shoot, IBA and their interaction on percent rooting of *Taxus baccata* stem cutting.

Table C14
Analysis of variance for the effect of clone, physiological age of shoot, IBA and their interaction on root number of *Taxus baccata* stem cutting.

Table C15
Analysis of variance for the effect of clone, physiological age of shoot, IBA and their interaction on mean root length per cutting of *Taxus baccata* stem cutting.

Table C16
Analysis of variance for the effect of rooting media on percent spouting of juvenile stem cutting of *Taxus baccata*.

Table C17
Analysis of variance for the effect of rooting media on percent spouting of mature stem cutting of *Taxus baccata*.

Table C18
Analysis of variance for the effect of rooting media on percent survived of juvenile stem cutting of *Taxus baccata*.

Table C19
Analysis of variance for the effect of rooting media on percent survived of mature stem cutting of *Taxus baccata*.

Table C20
Analysis of variance for the effect of rooting media on percent rooting of juvenile stem cutting of *Taxus baccata*.

Table C21
Analysis of variance for the effect of rooting media on percent rooting of mature stem cutting of *Taxus baccata*.

Table C22
Analysis of variance for the effect of rooting media on mean root number of juvenile cutting of *Taxus baccata*.

Table C23
Analysis of variance for the effect of rooting media on mean root number of mature stem cutting of *Taxus baccata*.
Table C 24 Analysis of variance for the effect of rooting media on mean root length of juvenile stem cutting of *Taxus baccata.* 220
Table C25 Analysis of variance for the effect of rooting media on mean root length of mature stem cutting of *Taxus baccata.* 220
Table C26 Analysis of variance for the effect of cutting age, shoot position and IBA concentration and their interaction on percent sprouted of *Taxus baccata* stem cuttings. 221
Table C27 Analysis of variance for the effect of cutting age, shoot position and IBA concentration and their interaction on percent callused of *Taxus baccata* stem cuttings. 222
Table C 28 Analysis of variance for the effect of cutting age, shoot position and IBA concentration and their interaction on percent rooted of *Taxus baccata* stem cuttings. 223
Table C 29 Analysis of variance for the effect of cutting age, shoot position and IBA concentration and their interaction on mean number of root per cutting *Taxus baccata.* 224
Table C 30 Analysis of variance for the effect of cutting age, shoot position and IBA concentration and their interaction on mean root length of *Taxus baccata* stem cuttings. 225
Table C 31 Analysis of variance for the effect of shoot type, wound and PGR Treatment and their interaction on percent survived of *Taxus baccata* stem cuttings. 226
Table C 32 Analysis of variance for the effect of shoot type, wound and PGR Treatment and their interaction on number of days required for root initiation of *Taxus baccata* stem cuttings. 227
Table C 33 Analysis of variance for the effect of shoot type, wound and PGR Treatment and their interaction on percent rooted of *Taxus baccata* stem cuttings. 228
Table C 34 Analysis of variance for the effect of shoot type, wound and PGR Treatment and their interaction on mean number of root of *Taxus baccata* stem cuttings. 229
Table C 35 Analysis of variance for the effect of shoot type, wound and PGR Treatment and their interaction on mean root length of *Taxus baccata* stem cuttings. 230
Table C 36 ANOVA mean sum of the square and *p* value for percent sprouted of *Taxus baccata* shoot cuttings of during spring season 231
Table C 37 ANOVA mean sum of the square and *p* value for percent sprouted of *Taxus baccata* shoot cuttings of during monsoon season. 231
Table C 38 ANOVA mean sum of the square and *p* value for percent 231
sprouted of *Taxus baccata* shoot cuttings of during autumn season.

Table C 39 ANOVA mean sum of the square and *p* value for percent sprouted of *Taxus baccata* shoot cuttings of during winter season.

Table C 40 ANOVA mean sum of the square and *p* value for percent rooted of *Taxus baccata* shoot cuttings of during spring season.

Table C 41 ANOVA mean sum of the square and *p* value for percent rooted of *Taxus baccata* shoot cuttings of during monsoon season.

Table C 42 ANOVA mean sum of the square and *p* value for percent rooted of *Taxus baccata* shoot cuttings of during autumn season.

Table C 43 ANOVA mean sum of the square and *p* value for percent rooted of *Taxus baccata* shoot cuttings of during winter season.

Table C 44 ANOVA mean sum of the square and *p* value mean number of root of *Taxus baccata* shoot cuttings of during spring season.

Table C 45 ANOVA mean sum of the square and *p* value for mean number of root of *Taxus baccata* shoot cuttings of during monsoon season.

Table C 46 ANOVA mean sum of the square and *p* value for mean number of root of *Taxus baccata* shoot cuttings of during autumn season.

Table C 47 ANOVA mean sum of the square and *p* value mean number of root of *Taxus baccata* shoot cuttings of during winter season.

Table C 48 ANOVA mean sum of the square and *p* value for mean root length of *Taxus baccata* shoot cuttings of during spring season.

Table C 49 ANOVA mean sum of the square and *p* value for mean root length of *Taxus baccata* shoot cuttings of during monsoon season.

Table C 50 ANOVA mean sum of the square and *p* value mean length of *Taxus baccata* shoot cuttings of during autumn season.

Table C 51 ANOVA mean sum of the square and *p* value for mean root length of *Taxus baccata* shoot cuttings of during winter season.

Table D1 Mean values of percent sprouting of *Taxus baccata* stem
cuttings in response different mode of application and PGR treatment.

Table D2 Mean values of percent survival of *Taxus baccata* stem cuttings in response to different mode of application and PGR treatment. 238

Table D3 Mean values of percent rooting of *Taxus baccata* stem cuttings in response to different mode of application and PGR treatment. 239

Table D4 Mean values of mean root number per cutting of *Taxus baccata* stem cuttings in response to different mode of application and PGR treatment. 240

Table D5 Mean values of mean root length per cutting of *Taxus baccata* stem cuttings in response to different mode of application and PGR treatment. 241

Table D6 Mean values of percent sprouted of *Taxus baccata* stem cuttings in response to diameter of cutting and various concentration of plant growth regulator. 242

Table D7 Mean values of percent survived of *Taxus baccata* stem cuttings in response to diameter of cutting and various concentration of plant growth regulator. 243

Table D8 Mean values of percent rooted of *Taxus baccata* stem cuttings in response to diameter of cutting and various concentration of plant growth regulator. 244

Table D9 Mean values of number of roots per cuttings of *Taxus baccata* in response to diameter of cutting and various concentration of plant growth regulator. 245

Table D10 Mean values of root length (cm) *Taxus baccata* in response to diameter of cutting and various concentration of plant growth regulator. 246

Table D11 Mean values of percent survival of *Taxus baccata* stem cuttings in response to clone, physiological age of shoot and various concentration of IBA. 247

Table D12 Mean values of percent survival of *Taxus baccata* stem cuttings in response to clone, physiological age of shoot and various concentration of IBA. 248

Table D13 Mean values of percent rooted of *Taxus baccata* stem cuttings in response to clone, physiological age of shoot and various concentration of IBA. 249

Table D14 Mean values of number of root produced per cuttings of *Taxus baccata* in response to clone, physiological age of shoot and various concentration of IBA. 251
Table D 15 Mean values of root length per cuttings of Taxus baccata in response to clone, physiological age of shoot and various concentration of IBA.

Table D 16 Mean values of percent sprouted after 30 days of planting of two types of cuttings of Taxus baccata in response to various rooting media.

Table D 17 Mean values of percent survived after 180 days of planting of two types of cuttings of Taxus baccata in response to various rooting media.

Table D 18 Mean values of percent rooting of two types of cuttings of Taxus baccata in response to various rooting media.

Table D 19 Mean values of number of roots per cuttings of two types of cuttings of Taxus baccata in response to various rooting media.

Table D 20 Mean values of number of roots per cuttings of two types of cuttings of Taxus baccata in response to various rooting media.

Table D 21 Effect of age of donor plants, shoot position, and IBA treatment on rooting percentage, number of root per cuttings, root length and callusing percentage for Taxus baccata stem cuttings.

Table D 22 Interactive effect of age of donor and shoot position on percent sprouted, percent callused, percent rooted, mean number of number of root per cuttings, mean root length and for Taxus baccata stem cuttings.

Table D 23 Interactive effect of age of donor plant and IBA concentration on percent sprouted, percent callused, percent rooted, mean number of number of root per cuttings, mean root length and for Taxus baccata stem cuttings.

Table D 24 Interactive effect of shoot position and IBA concentration on percent sprouted, percent callused, percent rooted, mean number of number of root per cuttings, mean root length for Taxus baccata stem cuttings.

Table D 25 Influence of shoot type, wound and IBA treatment on percent survival and number of days required for root initiation of Taxus baccata shoot cuttings.

Table D 26 Influence of shoot type, wound and IBA concentration on survival percentage, number of days required for root initiation, rooting percentage, root number per cuttings and mean root length of Taxus baccata shoot cuttings.

Table D 27 Influence of two way interaction of shoot x wounding, shoot
x IBA concentration and wounding x IBA concentration on different rooting parameters of *Taxus baccata* shoot cuttings.

Table D 28
Mean effect of growth stage and IBA treatment on sprouting percentage of *Taxus baccata* shoot cuttings of four seasons.

Table D 29
Mean effect of growth stage and IBA treatment on rooting percentage of *Taxus baccata* shoot cuttings of four seasons.

Table D 30
Mean effect of growth stage and IBA treatment on mean number of root of *Taxus baccata* shoot cuttings of four seasons.

Table D 31
Mean effect of growth stage and IBA treatment on mean root length (cm) of *Taxus baccata* shoot cuttings of four seasons.

Table D 32
Effect of IBA treatment on sprouting percentage of 3 different growth stages of *Taxus baccata* shoot cuttings.

Table D 33
Effect of IBA treatment on rooting percentage of 3 different growth stages of *Taxus baccata* shoot cuttings.

Table D 34
Effect of IBA treatment on root number of 3 different growth stages of *Taxus baccata* shoot cuttings.

Table D 35
Effect of IBA treatment on root length of 3 growth stages *Taxus baccata* shoot cuttings.

Table D 36
Survivability of 1st year and 2nd year cuttings treated with Control and 1000 ppm IBA treatment

Table D 37
Survivability of 3rd year cuttings treated with Control and 2000 ppm treatment