Figure No.	LIST OF FIGURES
Figure 1.1 | Global distribution of genus *Taxus* (Earle 2008)
Figure 3.1 | Average monthly rainfall (mm), relative humidity (maximum and minimum %) and temperature (maximum and minimum °C) during the year 2011. Source: Indian Council of Agriculture Research (ICAR), Shillong
Figure 3.2 | Average monthly rainfall (mm), relative humidity (maximum and minimum %) and temperature (maximum and minimum °C) during the year 2012. Source: Indian Council of Agriculture Research (ICAR), Shillong
Figure 3.3 | Average monthly rainfall (mm), relative humidity (maximum and minimum %) and temperature (maximum and minimum °C) during the year 2013. Source: Indian Council of Agriculture Research (ICAR), Shillong
Figure 3.4 | Average monthly rainfall (mm), relative humidity (maximum and minimum %) and temperature (maximum and minimum °C) during the year 2014. Source: Indian Council of Agriculture Research (ICAR), Shillong
Figure 3.5 | Average monthly rainfall (mm), relative humidity (maximum and minimum %) and temperature (maximum and minimum °C) during the year 2015. Source: Indian Council of Agriculture Research (ICAR), Shillong
Figure 4.1 | Mean effect of various PGR treatments on percent sprouting of cuttings of *Taxus baccata* after 30 days of planting.
Figure 4.2 | Effect of various plant growth regulators on percent sprouting of *Taxus baccata* stem cuttings after 30 days of planting in poly cum shade house.
Figure 4.3 | Mean effect of various PGR treatments on percent survival of cuttings of *Taxus baccata* after 120 days of planting.
Figure 4.4 | Effect of plant growth regulators on percent survival of *Taxus baccata* stem cuttings after 120 days of planting in poly cum shade house.
Figure 4.5 | Mean effect of various PGR treatments on percent rooting of *Taxus baccata* cuttings after 120 days of planting.
Figure 4.6 | Mean effect of various PGR treatments on percent rooting of cuttings of *Taxus baccata* after 120 days of planting.
Figure 4.7 | Mean effect of various PGR treatments on mean number of roots per cutting.
Figure 4.8 | Effect of plant growth regulators on mean number of root per cuttings of *Taxus baccata*.

Page No.: 3
Page No.: 29
Page No.: 29
Page No.: 30
Page No.: 30
Page No.: 31
Page No.: 63
Page No.: 64
Page No.: 67
Page No.: 67
Page No.: 68
Page No.: 69
Page No.: 70
Page No.: 70
Figure 4.9 Mean effect of various PGR treatments on root length of cuttings of *Taxus baccata*. 71
Figure 4.10 Effect of plant growth regulators on mean root length per cuttings of *Taxus baccata*. 71
Figure 4.11 Effect of plant growth regulators on percent sprouting of cuttings *Taxus baccata* stem cuttings after 30 days of planting. 73
Figure 4.12 Effect of plant growth regulators on percent survival of *Taxus baccata* stem cuttings after 180 days of planting. 74
Figure 4.13 Effect of plant growth regulators on percent rooting of *Taxus baccata* stem cuttings after 180 days of planting. 77
Figure 4.14 Effect of plant growth regulators on mean number of roots produced by *Taxus baccata* stem cuttings. 79
Figure 4.15 Effect of plant growth regulators on mean root length by *Taxus baccata* stem cuttings. 80
Figure 4.16 Sprouting percentage of juvenile and mature cutting after 30 days of planting in poly- house. 81
Figure 4.17 Interactive effects of clone and age on percent sprouting. 82
Figure 4.18 Interactive effects of clone and IBA treatment on percent sprouting. 82
Figure 4.19 Survival percentage of juvenile and mature cutting after 180 days of planting in poly-cum – shade house. 83
Figure 4.20 Interactive effect of clone and age on percent survival. 84
Figure 4.21 Interactive effects of clone and IBA treatment on percent survival. 84
Figure 4.22 Rooting percentage of juvenile and mature cutting after 180 days of planting in poly house. 85
Figure 4.23 Interactive effects of Clone and Age on percent rooting. 86
Figure 4.24 Interactive effects of clone and IBA treatment on percent rooting. 87
Figure 4.25 Interactive effects of age and IBA treatment on percent rooting. 87
Figure 4.26 Mean number of roots of rooted cutting juvenile and mature cutting in poly-cum – shade house. 88
Figure 4.27 Interactive effects of clone and age on mean number root number per cuttings. 89
Figure 4.28 Mean length of roots of rooted cutting juvenile and mature cutting in poly-cum – shade house. 93
Figure 4.29 Interactive effects of age and clone on root length. 94
Figure 4.30 Interactive effects of clone and IBA treatment on root length. 94
Figure 4.31 Percent sprouting in juvenile cutting of *Taxus baccata* in different rooting media after 30 days of planting in poly cum shade house.

Figure 4.32 Percent sprouting in mature cutting of *Taxus baccata* in different rooting media after 30 days of planting in poly cum shade house.

Figure 4.33 Percent surviving in juvenile cutting of *Taxus baccata* in different rooting media after 180 days of planting in poly cum shade house.

Figure 4.34 Percent surviving in mature cutting of *Taxus baccata* in different rooting media after 180 days of planting in poly cum shade house.

Figure 4.35 Percent rooting in juvenile cutting of *Taxus baccata* in different rooting media after 180 days of planting in poly cum shade house.

Figure 4.36 Percent rooting in mature cutting of *Taxus baccata* in different rooting media after 180 days of planting in poly cum shade house.

Figure 4.37 Mean number of root per rooted juvenile cutting of *Taxus baccata* in different rooting media after 180 days of planting in poly cum shade house.

Figure 4.38 Mean number of root per rooted juvenile cutting of *Taxus baccata* in different rooting media after 180 days of planting in poly cum shade house.

Figure 4.39 Mean root length per rooted juvenile cutting of *Taxus baccata* in different rooting media after 180 days of planting in poly cum shade house.

Figure 4.40 Mean root length per rooted mature cutting of *Taxus baccata* in different rooting media after 180 days of planting in poly cum shade house.

Figure 4.41 Effect of physiological age on rooting of *Taxus baccata* stem cuttings.

Figure 4.42 Effect of physiological age on root number of *Taxus baccata* rooted cuttings.

Figure 4.43 Effect of shoot position on callusing and rooting of *Taxus baccata* stem cuttings.

Figure 4.44 Effect of shoot position on root number of *Taxus baccata* rooted cuttings.

Figure 4.45 Effect of shoot position on root length of *Taxus baccata* rooted cuttings.
Figure 4.46 Effect of IBA treatment on callusing and rooting of *Taxus baccata* stem cuttings

Figure 4.47 Effect of IBA treatment on root number of *Taxus baccata* rooted cuttings.

Figure 4.48 Effect of IBA treatment on root length of *Taxus baccata* rooted cuttings.

Figure 4.49 Interactive effect of donor tree x IBA treatment on rooting of *Taxus baccata* stem cuttings.

Figure 4.50 Interactive effect of donor tree x IBA treatment on rooting of *Taxus baccata* stem cuttings.

Figure 4.51 Interactive effect of shoot position x IBA treatment on rooting of *Taxus baccata* stem cuttings.

Figure 4.52 Interactive effect of shoot position x IBA treatment on rooting of *Taxus baccata* stem cuttings.

Figure 4.53 Effect of IBA treatment on sprouting of 3 different growth stages of *Taxus baccata* shoot cuttings.

Figure 4.54 Effect of IBA treatment on rooting of 3 different growth stages of *Taxus baccata* shoot cuttings.

Figure 4.55 Effect of IBA treatment on mean root no. of 3 different growth stages of *Taxus baccata* shoot cuttings.

Figure 4.56 Effect of IBA treatment on mean root length of 3 different growth stages of *Taxus baccata* shoot cuttings.

Figure 6.1 Effect of 1000 ppm IBA on increment of stem length, mean number of sprout, mean number of branch and collar diameter of steckling of *Taxus baccata*.

Figure 6.2 Effect of 1000 ppm IBA on increment of stem length, mean number of sprout, mean number of branch and collar diameter of steckling of 2nd year stem cutting of *Taxus baccata*.

Figure 6.3 Effect of 2000 ppm IBA on increment of stem length, mean number of sprout, mean number of branch and collar diameter of steckling of 3rd year stem cutting of *Taxus baccata*.

Figure 5.1 Percent sprouting and rooting of different PGR treatment.

Figure 5.2: Effect of physiological age of stem rooting and spouting.

Figure 5.3 Effect PGR treatment on rooting of *Taxus baccata* juvenile cutting.

Figure 5.4 Effect PGR treatment on rooting of *Taxus baccata* mature cutting.

Figure 5.5 Effect PGR treatment on rooting of *Taxus baccata* cuttings having 0.5-1.0 cm diameter.

Figure 5.6 Effect PGR treatment on rooting of cuttings having 0.5-1.0 cm diameter.
Figure 5.7 Clonal variation in percent rooting and percent survival of cutting. 145
Figure 5.8 Effect of IBA treatment on rooting of cuttings of clone C2 and C3. 147
Figure 5.9 Linear regression between C/N ratio and rooting percentage. 151

ANNEXURE Page No.
A Weather Data at Shillong during period of investigation 204 - 206
B Temperature and Relative Humidity Inside Poly House During Studies 207 – 209
C Data Analysis 210-236
D Interaction tables for various experiments 237-271
 pH, Water holding capacity, Porosity, Organic matter content,
E Organic Carbon content, Nitrogen content and Carbon:Nitrogen ratio of Rooting Media 272