Chapter 1 – Introduction and review of literature

1.1. Diabetes

1.2. Current therapies for diabetes
 1.2.1. Oral hypoglycemic agents
 1.2.2. Modified insulins
 1.2.3. Incretin based therapeutics

1.3. Anti-diabetic agents under development
 1.3.1. Organic anti-diabetic agents
 1.3.2. Inorganic anti-diabetic agents
 1.3.2.1. Copper
 1.3.2.2. Tungsten
 1.3.2.3. Vanadium
 1.3.2.4. Chromium
 1.3.2.5. Magnesium
 1.3.2.6. Selenium
 1.3.2.7. Cobalt
 1.3.2.8. Zinc

1.4. Zinc and diabetes
 1.4.1. Zinc complexes as anti-diabetic agents
 1.4.2. Zinc supplementation
 1.4.3. Limitations of zinc based anti-diabetic agents
 1.4.4. Zinc supplementation in the form of zinc oxide nanoparticles (ZON)

1.5. Previous work done

1.6. Understanding insulin secretion

1.7. Understanding insulin signalling pathway
 1.7.1. Activation of insulin receptor and its substrates
<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Biological Fate of Zinc Oxide Nanoparticles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7.2. Phosphoinositide 3-Kinase/ Protein Kinase B (PI3K/PKB) pathway</td>
<td>19</td>
</tr>
<tr>
<td>1.7.3. GLUT4 translocation and glucose uptake</td>
<td>21</td>
</tr>
<tr>
<td>1.7.4. Glycogen synthesis</td>
<td>23</td>
</tr>
<tr>
<td>1.7.5. Lipolysis</td>
<td>25</td>
</tr>
<tr>
<td>1.7.6. Gluconeogenesis</td>
<td>27</td>
</tr>
<tr>
<td>1.8. Other modes of insulin resistance</td>
<td>30</td>
</tr>
<tr>
<td>1.9. Molecular mechanism of current anti-diabetic drugs</td>
<td>30</td>
</tr>
<tr>
<td>1.10. Molecular mechanism of anti-diabetic action of metals</td>
<td>32</td>
</tr>
<tr>
<td>1.11. Definition of the problem</td>
<td>35</td>
</tr>
<tr>
<td>1.12. Aim and Objectives</td>
<td>36</td>
</tr>
</tbody>
</table>

Chapter 2 – Biological fate of zinc oxide nanoparticles

2.1. Introduction | 37
2.2. Materials used | 38
 2.2.1. Zinc oxide nanoparticles (ZON) | 38
 2.2.2. Cells and culture media | 38
2.3. ZON transcytosis assay | 38
2.4. FITC tagging of ZON | 41
2.5. Cellular uptake of FITC-ZON | 42
 2.5.1. Cellular uptake of FITC-ZON in RIN5f cells | 42
 2.5.2. Time- and concentration-dependent uptake of FITC-ZON in RIN5f cells | 44
 2.5.3. Concentration-dependent uptake of FITC-ZON in HepG2 cells | 46
 2.5.4. Lysosomal colocalization of FITC-ZON in RIN5f cells | 47
2.6. Dissolution of ZON and release of zinc ions | 49
2.7. Discussion | 52
2.8. Salient findings | 55
Chapter 3 – Metabolic effects of zinc oxide nanoparticles

3.1. Introduction 57
3.2. Materials and Methods 57
 3.2.1. Cells and culture conditions 57
 3.2.2. Differentiation of pre-adipocyte to adipocyte 58
3.3. Cytotoxicity assay 59
3.4. Protein phosphorylation studies (PKB, PTP1B, HSL) 60
 3.4.1. PKB and PTP1B phosphorylation 61
 3.4.2. HSL phosphorylation 64
3.5. GLUT4 translocation assay 65
3.6. Glucose uptake assay 68
3.7. Gene expression studies (G-6-Pase, PEPCK, GCK) 71
 3.7.1. RNA isolation 71
 3.7.2. cDNA synthesis 72
 3.7.3. Quantitative Real-Time PCR 72
3.8. Discussion 74
3.9. Salient findings 77

Chapter 4 – Anti-oxidative effects of zinc oxide nanoparticles

4.1. Introduction 79
4.2. Materials 80
4.3. Effects of ZON per se on reactive oxygen species levels and anti-oxidant parameters of RIN5f cells 80
 4.3.1. Detection of reactive oxygen species 80
 4.3.2. Assessment of SOD and catalase activity, and GSH levels 82
 4.3.3. Acridine Orange/ Ethidium Bromide (AO/EB) staining for assessment of cell death 84
4.4. Effects of ZON pre-treatment on oxidative stress-mediated death of RIN5f cells

4.4.1. Detection of reactive oxygen species

4.4.2. Assessment of SOD activity and GSH levels

4.4.3. Acridine Orange/ Ethidium Bromide (AO/EB) staining for assessment of cell death

4.5. Discussion

4.6. Salient findings

Chapter 5 – Effect of zinc oxide nanoparticles on pancreatic beta cell mass and function

5.1. Introduction

5.2. Cytotoxicity assay

5.3. Cell death analysis

5.3.1. TUNEL assay

5.3.2. DNA fragmentation analysis

5.4. Effect of ZON on pancreatic beta cell proliferation in vitro

5.4.1. Cell viability assay

5.4.2. Cell proliferation assay (Ki67 staining)

5.5. Effect of ZON on pancreatic beta cell proliferation in vivo

5.6. Effect of ZON treatment on pancreatic beta cell function

5.7. Discussion

5.8. Salient findings

Chapter 6 – Summary and Conclusions

Bibliography

List of Publications