CHAPTER 5

DIGITALLY PROGRAMMABLE MULTIFUNCTIONAL FILTERS

This chapter discusses the concept of digitally programmable multifunctional filters and oscillators using CCII and CCCII. A total of three filters and one oscillator have been proposed within this Chapter. The first two filters that operate at low voltages are first-order and second-order multifunctional type. The third filter is fully differential (FD) and operates in voltage- and transadmittance-mode simultaneously. Towards the end of the Chapter, a CCCII is used as a building block to design a digitally-controlled quadrature oscillator circuit.

5.1 Introduction

Recent trends indicate a rapidly increasing demand for programmable analog signal processing modules. Programmability significantly enhances the on-chip control of these modules as has been pointed out in [27, 79, 115-117]. Consequently, numerous other designs have been recently proposed that support this feature. Keeping with this trend, this Chapter proposes some programmable first-order and second-order filters as well as a programmable oscillator. The first-order and one of the realized second-order filters is a low-voltage CM multifunctional filter. Such low voltage analog circuits are in demand when designing portable systems [118, 119].

Biquadratic filters with voltage input and voltage and/or current outputs as well as those with current input and current and/or voltage outputs have often been termed as mixed-mode filters [120-132]. Mixed-mode filter circuits can be categorized either as single-input type or multiple-input type [120-125]. Among these, circuit designs presented in [120-123] can realize only one standard filter function in one mode at a time while the design in [124] realizes all-filter responses in two modes at a time. In contrast, the filter presented in [125] is capable of providing all-pass responses in both inverting and non-inverting mode. It also produces VM and CM outputs with a differential stage input. In some applications however, simultaneous outputs may be required with a single input. Literature survey has shown that comparatively little work has been done in the domain of single-input-type mixed-mode filters in contrast to multiple-input type mixed-mode filters. However, some notable designs which operate in all modes can be found in [126-130, 132]. These filters are single-input-type mixed-mode filters using different active elements such as (CFOAs) [130], CCCII [132], FDCCII [126] and current-controlled current conveyor trans-conductance amplifiers (CCCTAs) [128]. They provide all output
functions in different modes. However, all of these circuits exhibit low input impedance except for those designed in [128, 129]. Study of mixed-mode filters with a single-input reveal a lack of circuits that realize FD inverting and non-inverting low-pass, high-pass and band-pass filter functions in voltage and transadmittance mode and offering high input impedance terminals.

At present, there is a growing interest in designing FD analog filters [62, 65, 70, 79, 133]. FD filters play a very important role in communication systems. For example, many instrumentation signals are differential in nature. They are processed under a filtering action before going to the differential amplifier stage. If single-ended filters are used then noise is also propagated along with the required signal which can lead to a severe reduction in the CMRR. On the other hand, FD filters increase the signal-to-noise ratio. These filters exhibit a larger dynamic range, better rejection to power-supply noise and reduced harmonic distortion when compared to single-ended input/output where unintended noise and signals may be processed along with the desired signal.

Purely from a design perspective, the circuit proposed in [133] includes three FDCCIIs, six resistors and four capacitors. It generates only VM low-pass and band-pass responses. The circuit described in [65] shows a VM FD filter which provides high-pass, band-pass and low-pass outputs simultaneously and contains five OTAs and three capacitors. The circuit presented in [70] has three OTAs, six capacitors and is capable of FD CM low-pass output. The FD VM filter in [62] employed three DO-DDCCs, two capacitors and five resistors. This filter generates high-pass, band-pass and low-pass outputs. The circuit of [79] employs five digitally-controlled CMOS fully-balanced output transconductor (DCBOTA), one resistor, two capacitors and offers digitally-controlled FD VM high-pass, band-pass and low-pass responses simultaneously.

It is to be noted that most of the previous work is concerned with the design of FD filters that operate either in VM or CM. In contrast, one of the proposed second-order filters (different from the one described above) is a voltage- and transadmittance-mode FD filter with a digital control facility. The filter so designed provides FD voltage- and transadmittance mode low-pass, high-pass and band-pass responses simultaneously either in inverting or non-inverting form.

Looking at the design of oscillators, literature is replete with both VM and CM quadrature oscillators [108, 134-141]. Some of them provide VM outputs while others generate CM signals. However, not much work has been reported on mixed-mode quadrature oscillators. The quadrature oscillator in [136] uses three resistors and two capacitors with an FDCCI to provide two VM and two CM outputs in phase quadrature. Although the quadrature oscillator of [136] uses only a single active element and exhibits non-interactive frequency control, it lacks electronic tunability. The quadrature oscillator of [137] uses two CCCIIIs and two grounded capacitors to generate quadrature CM and phase-
shifted voltage outputs. Electronic control of the frequency of oscillation as well as orthogonal control of frequency is also possible. However, current outputs are not suitable for driving high impedance loads. To generate load-insensitive CM outputs, additional output stages may be required, as employed in the proposed design. The circuit of [134] provides two quadrature current outputs and two phase-shifted voltage outputs using one plus-type and two minus-type CCCIs. The use of a floating capacitor in [134] adds to the circuit’s IC fabrication complexity. The circuit in [108] provides four-quadrature current outputs at high impedance and can be electronically tuned. It employs only grounded capacitors, but is categorized as a third-order oscillator. The oscillator circuit of [18] which generates multiphase current outputs at high impedance is electronically tunable and uses grounded capacitors. However, the circuit employs one translinear conveyor and three capacitors for each output of the n-phase oscillator. The circuits of [138, 141] are able to provide sinusoidal oscillations of up to the KHz range; though the component count for the circuits compares unfavorably with the proposed circuit. The oscillator of [140] is able to provide only VM quadrature outputs. The circuit of [139], although being easier to design and implement, is able to generate only CM outputs. Additional buffers would be required if VM outputs are desired.

CM oscillators with high-output impedance are of great interest because, apart from incorporating the well-known advantages of CM processing, they make it easy to drive loads without using a buffering device [137]. However, the recent circuit design trend is towards mixed-mode circuits that provide/use both VM and CM signals on the same chip. This added versatility in analog signal processing applications has led to the development of quadrature oscillator circuits that can provide both VM and CM outputs simultaneously. For such circuits, the current-controlled conveyor has emerged as the active device of choice as these translinear conveyors may be employed for realizing oscillators exhibiting electronic tunability and resistor-less realizations. Other features of interest for such circuits are orthogonal control of the condition of oscillation and frequency of oscillation, low component count and the use of grounded passive components from the point of view of contemporary integrated circuit implementation. Further, majority of the controllable current conveyors offer electronic control by an externally supplied bias current. However, digital control is a desirable feature in hybrid systems containing both analog and digital systems on the same chip.

The following section explains the technique reported in [142] to provide digital control (programmability) within CMOS implementations of CCII and goes on to propose a new technique to achieve programmability within a CMOS implementation of CCCII.
5.2 Digitally Programmable CCII

The digitally programmable CCII (DPCCII) [142] with gain N is shown in Fig. 5.1 and its CMOS implementation is shown in Fig. 5.2.

![Figure 5.1. Symbol of DPCCII with current gain N](image1)

![Figure 5.2. The CMOS implementation of a 3-bit DCCCII with current gain N [142](image2)

The idea behind the design of the proposed DPCCII is to control the current transfer gain parameter N. This is achieved by replacing the Z-terminal transistors of the CCII presented in Chapter 2 with transistor arrays associated with switches (PMOS M6A-M8A and NMOS M16A-M18A in Fig. 5.2). The gain parameter N can take values from 1 to $(2^n - 1)$, where n represents the number of transistor
DIGITALLY PROGRAMMABLE MULTIFUNCTIONAL FILTERS

Arrays. The concept of using transistor arrays to control the transconductance of basic transistors in a
digitally-controlled balanced-output transconductor was introduced in [143]. This idea has been
improved upon to implement a current summing network (CSN) at the Z-terminal as outlined in [142].
The CSN consists of n transistor pairs, whose N-MOS aspect ratios are given by:

\[
\left(\frac{W}{L} \right)_{N_i} = 2^i \left(\frac{W}{L} \right)_{15} \quad i = \{0,1, ..., n-1\} \tag{5.1}
\]

Similarly, for the P-MOS array, the aspect ratios are:

\[
\left(\frac{W}{L} \right)_{P_i} = 2^i \left(\frac{W}{L} \right)_{5} \quad i = \{0,1, ..., n-1\} \tag{5.2}
\]

Consequently, the current at the Z-terminal, if flowing out of the DPCCII block, can be expressed by:

\[
I_Z = \sum_{i=0}^{n-1} a_i 2^i (I_{M5} - I_{M15}) \tag{5.3}
\]

Therefore, the proposed DPCCII provides a current transfer gain equal to:

\[
N = \frac{I_Z}{I_X} = \sum_{i=0}^{n-1} a_i 2^i \tag{5.4}
\]

Parameter \(a_i\) represents the digital code-bit applied to the \(i^{th}\) branch in the CSN and is responsible for
enabling and disabling the current flowing in that particular branch.

The symbol of a digitally-controlled CCII with current gain \(N^{-1}\) is shown in Fig. 5.3 and its
CMOS implementation is shown in Fig. 5.4 [142]. The design idea presented previously can again be
employed to implement a DPCCII with a current gain of less than unity. However, the transistor arrays
are placed on the X-terminal and the CSN is moved to the input side. The Z-terminal gets only a replica
of the smallest current in the array.

Figure 5.3. Symbol of DPCCII with current gain \(N^{-1}\)
Figure 5.4. The CMOS implementation of a 3-bit DPCCII with current gain \(N^{-1} \) [142]

As previously discussed, the CSN consists of \(n \) transistor pairs with the same aspect ratios as described in equations (5.1) and (5.2). The current at the X-terminal, flowing out the DPCCII block, is therefore given by:

\[
I_X = \sum_{i=0}^{n-1} a_i 2^i (I_{M5} - I_{M15})
\]

(5.5)

As a consequence, the DPCCII provides a current transfer gain equal to:

\[
\frac{I_Z}{I_X} = \frac{1}{\sum_{i=0}^{n-1} a_i 2^i}
\]

(5.6)

Here, parameter \(a_i \) is responsible for enabling or disabling the current flow in the \(i \)th branch of the CSN. The current fed to the X-terminal is always \(N \) times greater than the current received at the Z-terminal.

The transfer matrix of DPCCII with current gain \(N \) and current gain \(N^{-1} \) can be expressed as:

\[
\begin{bmatrix}
I_Y \\ V_X \\ I_Z
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & \pm N^m & 0
\end{bmatrix}
\begin{bmatrix}
V_Y \\ I_X \\ V_Z
\end{bmatrix}
\]

(5.7)
where, \(N \) is an \(n \)-bit digital control word \((N = \sum_{i=0}^{n-1} a_i 2^i) \), the plus sign corresponds to \(I_{Z+} \) and the minus sign to \(I_{Z-} \). The power integer is \(m = 1 \) when the current gain is \(N \), and \(m = -1 \) when the current gain is \(N^{-1} \).

5.3 Digitally Current-Controlled Differential Voltage Conveyor (DCCDVC)

A current controlled conveyor (CCCII), [144] shown in Fig. 5.5, is characterized by the following port relationships:

\[
i_Y = 0; \quad V_X = V_Y + I_X R_X, \text{ and } i_Z = p i_X
\]

(5.8)

![Figure 5.5. Electrical Symbol of CCCII](image)

In the above equation, \(p = +1 \) for a positive current-controlled conveyor and \(p = -1 \) for a negative current-controlled conveyor. A multi-output current controlled conveyor has several outputs of \(Z+ \) and \(Z- \) type. The resistance \(R_X \) appearing in equation (5.8) is the intrinsic \(X \)-terminal resistance of the CCCII [145]. It is related to the bias current of the CCCII as:

\[
R_X = \frac{1}{g_{m19} + g_{m20}}
\]

(5.9)

Where

\[
g_m = \sqrt{2 \beta I_B}, \quad \beta = \mu C_{OX}(W/L)
\]

(5.10)

In equation (5.10) \(\mu, C_{OX}, W \) and \(L \) are the surface mobility, oxide capacitance, channel width and length of MOS transistors respectively and where \(g_{m19} \) and \(g_{m20} \) are the transconductances of \(M_{19} \) and \(M_{20} \) respectively in Fig. 5.9. Thus \(R_X \) is controlled via \(I_B \) if CMOS CCCIIIs are used. Since \(g_{m19} = g_{m20} = g_m \), equation (5.9) becomes:

\[
R_X \approx \frac{1}{\sqrt{8\beta C_{OX}(W/L)} I_B}
\]

(5.11)

As can be seen from (5.11), the resistance \(R_X \) can be adjusted by using a supplied bias current \(I_B \). The DCCDVC is similar to the CCCII [146] except that the intrinsic resistance \((R_X) \) is digitally controlled by varying the bias current with the help of a digital control word and its input stage (\(Y- \) port) is modified
to be similar to that of the DVCC[147]. In DCCDVC, the bias current is controlled by incorporating a current division network (CDN)[148] which consists of n current division cells (CDCs) shown in Fig. 5.6.

Figure 5.6. Current division network (CDN) [148]

The CDC is a three-terminal network shown in Fig. 5.7. The output currents I_{out-1} and I_{out-2} can be varied as fractions of the Input current I_B and are represented by the following relationships.

$$I_{out-1} = \alpha I_B$$ \hspace{2cm} (5.12)

$$I_{out-2} = (1 - \alpha) I_B$$ \hspace{2cm} (5.13)

where

$$\alpha = \frac{1}{2^n} \sum_{i=0}^{n-1} 2^i a_i$$ \hspace{2cm} (5.14)

Control word $a_i = [a_7 \ a_6 \ a_5 \ a_4 \ a_3 \ a_2 \ a_1 \ a_0]$ can be applied to the CDN externally and n is the number of bits. The DCCDVC is described by the port relations given in equation (5.15) and its symbol is shown in Fig. 5.8. The CMOS implementation of digital current-controlled differential voltage conveyor is shown in Fig. 5.9.
DIGITALLY PROGRAMMABLE MULTIFUNCTIONAL FILTERS

\[
\begin{bmatrix}
V_Y \\
I_{Y1} \\
I_{Y2} \\
I_{Z+} \\
I_{Z-}
\end{bmatrix}
= \begin{bmatrix}
R_{XD} & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
V_X \\
I_{X+} \\
I_{X-} \\
V_{Y1} \\
V_{Y2} \\
V_{Z+} \\
V_{Z-}
\end{bmatrix}
\]

(5.15)

For the DCCDVC, the expression of the digitally-controlled, intrinsic X-terminal resistance, \(R_{XD} \) is derived from equation (5.11) by replacing \(I_B \) with \(\alpha I_B \) can be given as:

\[
R_{XD} = \left[8\mu n C_{ox} \frac{W}{L} \alpha I_B \right]^{-1/2}
\]

(5.16)

Where \(\alpha \) is given in (5.14).

5.4 Low-Voltage Digitally-Programmable Multifunctional Filters

This section presents two CM digitally-programmable filters operating at low voltages. The first is a reconfigurable continuous time first-order multifunctional filter while the second is a second-order biquadratic filter.
First-Order Digitally-Programmable Multifunctional Filter

The proposed low-voltage CM first-order multifunctional filter uses a CCII, a DPCCII and a grounded resistor and capacitor. Its schematic diagram is shown in Fig. 5.10. The DPCCII uses an inverse N-block and its CMOS implementation is shown in Fig. 5.11.

![Schematic Diagram](image1)

Figure 5.10. The digitally controlled current-mode first order multifunctional filter

![CMOS Implementation](image2)

Figure 5.11. CMOS implementation of a 3-bit DPCCII of Fig. 5.10
DIGITALLY PROGRAMMABLE MULTIFUNCTIONAL FILTERS

By putting \(m = -1 \) in equation (5.7), and analyzing the circuit of Fig. 5.10, the current transfer functions \(T_{LP} \), \(T_{HP} \) and \(T_{AP} \) for low-pass, high-pass and all-pass responses can respectively be obtained as:

\[
T_{LP} = \frac{I_{LP}}{I_{IN}} = \frac{N/RC}{s + N/RC} \tag{5.17}
\]
\[
T_{HP} = \frac{I_{HP}}{I_{IN}} = \frac{s}{s + N/RC} \tag{5.18}
\]
\[
T_{AP} = \frac{I_{AP}}{I_{IN}} = \frac{s - N/RC}{s + N/RC} \tag{5.19}
\]

From equation (5.17)-(5.19) it is evident that the pole frequency is:

\[
\omega_0 = \frac{N}{RC} \tag{5.20}
\]

Equation (5.20) show that the pole frequency is directly proportional to the digital control word \(N \).

Effect of Non-Idealities

Taking the non-idealities of CCIIs into account, the relationship of the terminal voltages and currents can be rewritten as:

\[
V_X = \beta_k V_Y, \quad I_{Z+} = a_{k1} I_X, \quad I_{Z-} = -a_{k2} I_X \tag{5.21}
\]

In equation (5.21) \(\beta_k \) is the voltage transfer gain from terminal-Y to terminal-X for the \(k \)th CCI and \(a_{k1} \), \(a_{k2} \) are the current-transfer gains for the \(k \)th CCI from X to Z+ and Z− respectively. Using equation (5.21), the non-ideal transfer functions can be obtained as:

\[
T_{LP} = \frac{I_{LP}}{I_{IN}} = \frac{\beta_1 a_{11} N}{\beta_2 a_{22} RC} \frac{1}{s + \frac{\beta_1 a_{11} N}{\beta_2 a_{22} RC}} \tag{5.22}
\]
\[
T_{HP} = \frac{I_{HP}}{I_{IN}} = \frac{s a_{11} N}{a_{22} RC} \frac{1}{s + \frac{s a_{11} N}{a_{22} RC}} \tag{5.22}
\]
\[
T_{AP} = \frac{I_{AP}}{I_{IN}} = \frac{\beta_2 a_{21}}{\beta_{12} a_{22}} \left[\frac{a_{12} N}{\beta_2 a_{22} RC} \right] \frac{1}{s + \frac{a_{12} N}{\beta_2 a_{22} RC}} \tag{5.24}
\]

From equations (5.22), (5.23) and (5.24) the pole frequency of filter becomes:

\[
\omega_{0,n} = \frac{\beta_1 a_{13} N}{\beta_2 a_{22} RC} \tag{5.25}
\]

From equation (5.25), it is obvious that the non-idealities in the transfer functions affect the pole-frequency.
DIGITALLY PROGRAMMABLE MULTIFUNCTIONAL FILTERS

Design and Verification

The digitally-programmable CM first-order multifunctional filter of Fig. 5.10, is designed and verified by PSPICE simulation with a supply voltage of ±0.75V using CMOS TSMC 0.25µm technology parameters. The CMOS DPCCII with 3-bit current summing network at port-X (i.e. m = −1) of Fig. 5.11 is used. The aspect ratios of the transistors used in DPCCII are given in the Table 5.1. These aspect ratios are valid for CCII as well. The filter pole frequency is obtained as \(\omega_0 = N/RC \). Initially, the filter is designed for a pole frequency of 159.1 KHz with \(N = 1 \), \(R = 1k\Omega \) and \(C = 1nF \). The pole frequency is controlled through a digital control word \(N \). The observed low-pass and high-pass frequency responses of the filter for different control words (\(N=1, 2, 4, 7 \)) is given in Fig. 5.12. The simulated frequencies are found to be 158.1 KHz, 318.1 KHz, 630.9 KHz and 1.11 MHz with respect to theoretical frequency values of 159.15 KHz, 318.3 KHz, 636.6 KHz and 1.27 MHz respectively. The gain and phase plot of the all-pass filter for different control words (\(N=1, 2, 4, 7 \)) are shown in Fig. 5.12, which are in close conformity with the design.

Table 5.1. MOS Aspect ratio for DPCCII of Fig. 5.11

<table>
<thead>
<tr>
<th>Transistors</th>
<th>Aspect ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_1, M_2, M_{11}, M_{12})</td>
<td>5/0.25</td>
</tr>
<tr>
<td>(M_3, M_4, M_{13}, M_{14})</td>
<td>0.5/0.5</td>
</tr>
<tr>
<td>(M_5, M_6, M_{15}, M_{16}, M_{16A})</td>
<td>25/0.25</td>
</tr>
<tr>
<td>(M_7, M_{17}, M_{18}, M_{17A})</td>
<td>50/0.25</td>
</tr>
<tr>
<td>(M_8, M_{18}, M_{18A})</td>
<td>100/0.25</td>
</tr>
<tr>
<td>(M_{19}, M_{20}, M_{21}, M_{22}, M_{23}, M_{24})</td>
<td>25/0.25</td>
</tr>
</tbody>
</table>

Figure 5.12. Frequency response of the digitally programmable LP and HP filters

\[N \quad f_0 \]
\[
\begin{array}{ll}
1 & 158.1KHz \\
2 & 318.1KHz \\
4 & 630.9KHz \\
7 & 1.11MHz \\
\end{array}
\]
DIGITALY PROGRAMMABLE MULTIFUNCTIONAL FILTERS

Figure 5.13. Gain and phase response of the digitally programmable all-pass filter

Low-Voltage Digitally-Programmable Second-Order Filter

The proposed digitally programmable CM second-order filter is shown Fig. 5.14. The circuit uses three digitally programmable CCHIs, two grounded capacitors and four grounded resistors. DPCHI 1 and 2 have a gain of N while DPCHI 3 has a gain of N^{-1}.

![Circuit Diagram]

Figure 5.14. Proposed digitally programmable biquadratic filter

Analysis of the above circuit using equation (5.7) yields the following transfer functions:

$$T_{LP} = \frac{I_{LP}}{I_{IN}} = \frac{(N_1N_2)}{(C_1C_2R_1R_2)} \frac{D(S)}{D(S)}$$ \hspace{1cm} (5.26)

$$T_{BP} = \frac{I_{BP}}{I_{IN}} = s(N_1R_1)(N_4C_2R_1R_4) \frac{D(S)}{D(S)}$$ \hspace{1cm} (5.27)

$$T_{HP} = \frac{I_{HP}}{I_{IN}} = s^2 \frac{D(S)}{D(S)}$$ \hspace{1cm} (5.28)

with \hspace{0.5cm} D(S) = s^2 + s \frac{N_1R_3}{N_2C_2R_1R_4} + \frac{N_4N_2}{C_1C_2R_1R_2}$$ \hspace{1cm} (5.29)
DIGITALLY PROGRAMMABLE MULTIFUNCTIONAL FILTERS

Equations (5.26) to (5.29) represent low-pass, band-pass and high-pass transfer functions respectively.

The filter gain parameters are:

\[H_{HP} = 1, \quad H_{BP} = 1, \quad H_{LP} = 1 \]

and the pole frequency and pole-Q are given as:

\[\omega_0 = \sqrt{\frac{N_1N_2}{C_1C_2R_1R_2}} \]

\[Q = \frac{N_3R_3}{R_3} \sqrt{\frac{N_4R_4}{N_1R_1R_2}} \]

From equation (5.31) and (5.32) it is clear that the pole frequency and pole-Q can be digitally controlled independent of each other. Assuming \(R_1 = R_3 = R_2 = R_i = R \), \(C_1 = C_2 = C \) and \(N_1 = N_2 = N \), equations (5.31) and (5.32) reduce to:

\[\omega_0 = \frac{N}{RC} \]

\[Q = N_3 \]

Equation (5.34) shows that the pole-Q is directly proportional to the control word applied at DPCCII ③.

Non-Ideal Study

Taking the non-idealities of CCIIs into account as mentioned in Section 2.3, the circuit shown in Fig. 5.14 is analysed and the non-ideal transfer functions are obtained as:

\[T_{LP,N} = \frac{I_{LP}}{I_{IN}} = \frac{(\beta_1\beta_2\alpha_{11}\alpha_{12}N_1N_2)/(R_1R_2C_1C_2)}{D_n(s)} \]

\[T_{BP,N} = \frac{I_{BP}}{I_{IN}} = \frac{(s\beta_1\beta_3\alpha_{21}\alpha_{21}R_3)/(C_2R_1R_4)}{D_n(s)} \]

\[T_{HP,N} = \frac{I_{HP}}{I_{IN}} = \frac{s^2}{D_n(s)} \]

where

\[D_n(s) = s^2 + s \frac{\beta_1\beta_2\alpha_{21}\alpha_{22}N_1N_2}{C_2R_1R_4N_3} + \frac{\beta_1\beta_2\alpha_{21}\alpha_{22}N_1N_2}{C_4C_2R_1R_2} \]

In equations (5.35) to (5.38), \(\beta_i \) is the voltage gain from Y and X terminal of DPCCII-i and \(\alpha_{ij} \) and \(\alpha_{ki} \) are the current transfer gains from X terminal to Z+ and Z− respectively where \(i = 1, 2, 3 \). The pole-frequency and pole-Q of the proposed filter, affected in the presence of non-idealities are now:
The parasitic capacitances (C_{parasitics} in the form of series resistance R_h) where

$$
\omega_{0,n} = \sqrt{\frac{\beta_1\beta_2\alpha_{11}\alpha_{22}N_3N_2}{C_1C_2R_1R_2}}
$$

(5.39)

$$
Q_n = \frac{N_3R_4}{\alpha_{21}\alpha_{23}R_3} \sqrt{\frac{\beta_2\alpha_{11}\alpha_{22}N_2C_2R_1}{\beta_1N_1C_1R_2}}
$$

(5.40)

The passive sensitivities of \(\omega_{0,n}\) and \(Q_n\) are given as:

$$
S_{\omega_{0,n}}^{\omega_{0,n}} = S_{\beta_1,\beta_2,\alpha_{11},\alpha_{22},N_3,N_2} = \frac{1}{2}, \quad S_{\beta_1,\beta_2,\alpha_{11},\alpha_{22},N_3,N_2} = \frac{1}{2}
$$

$$
S_{\omega_{0,n}}^{\omega_{0,n}} = S_{\beta_1,\beta_2,\alpha_{11},\alpha_{22},N_3,N_2} = \frac{1}{2}, \quad S_{\beta_1,\beta_2,\alpha_{11},\alpha_{22},N_3,N_2} = \frac{1}{2}
$$

(5.41)

From equation (5.41) it is clear that the sensitivities are less than or equal to unity in magnitude.

Parasitic Study

The effect of parasitics due to the presence of CCII within the proposed circuit is analyzed which reveals port-Z parasitics in the form of R_h//C_h, port-Y parasitics in the form of R_v//C_v and port-X parasitics in the form of series resistance R_x. The modified transfer functions taking into account the above parasitics can then be expressed as:

$$
T_{LP,P} = \frac{I_{LP}}{I_{IN}} = \frac{(N_1N_2)[sC_pR_3 + 1]/(C_1C_2R_1R_2')}{D_p(s)}
$$

(5.42)

$$
T_{BP,P} = \frac{I_{BP}}{I_{IN}} = \frac{s(N_1R_3)/(N_2C_2R_1R_4')}{D_p(s)}
$$

(5.43)

$$
T_{HP,P} = \frac{I_{HP}}{I_{IN}} = \frac{s^2[sC_pR_3 + 1]}{D_p(s)}
$$

(5.44)

where

$$
D_p(s) = s^3C_pR_3 + s^2 + s \left[\frac{N_1R_3}{N_2C_2R_1R_4'} + \frac{N_1N_2C_pR_3}{C_1C_2R_1R_2'} + \frac{N_1N_2}{C_1C_2R_1R_2'} \right]
$$

(5.45)

where \(R_i' = R_i + R_h\), \(R_{i'2} = R_{i2} + R_h\), \(R_i' = R_i + R_h\), \(C_i' = C_i + C_{2h} + C_{1h}\), \(C_{i'2} = C_{i'2} + C_{1h} + C_{i'2h} + 3(C_{2h} + C_{1h})\).

Since the parasitic capacitances C_h, C_v are in the range of fF_s and the port-Y parasitic resistances in the range of M_\Omega, these may be neglected from the above equations. However, the same cannot be said for the parasitic capacitances (C_h, C_v). They appear in parallel with R_h, and thus result in undesired pole/zero in the transfer functions. But, the inclusion of these poles/zeroes will not affect the dominant pole frequency of the circuit and would only restrict the high frequency performance.
Design and Verification

The proposed filter, shown in Fig. 5.14, is verified by designing it for a variable pole frequency by selecting different control words. The supply voltages are taken as $V_{DD} = V_{SS} = \pm 0.75V$ and the aspect ratios are as shown in Table 5.1. The element values chosen are $R_1 = R_2 = R_3 = R_4 = R = 1\Omega$ and $C_1 = C_2 = C = 0.4nF$. The filter responses are obtained by applying the same control words ($N_1 = N_3$) to DCCCIIs ① and ②. Fig. 5.15 and 5.16 shows the low-pass and the high-pass responses. The band-pass response is depicted in Fig. 5.17. All the responses are obtained for the control word $N = 1, 2, 4, 7$ and corresponds to curves A, B, C and D in Fig. 5.15 to Fig. 5.17. In addition, all the responses have a gain of unity. The simulated pole frequencies obtained are 385KHz, 786KHz, 1.58MHz and 2.7MHz while the corresponding theoretical frequency values are 397.8KHz, 795.7KHz, 1.59MHz and 2.78MHz respectively. The variation of pole-Q by varying N_3 (as 1, 2, 4 and 7) at 385KHz frequency is shown in Fig. 5.18 and the values of pole-Q obtained through simulation are 1, 1.98, 3.85 and 6.7 while the corresponding theoretical values are 1, 2, 4 and 7 respectively.

![Figure 5.15. Tuning of low-pass filter function with digital control word](image1)

![Figure 5.16. Tuning of high-pass filter function with digital control word](image2)
5.5 Digitally-Controlled Fully-Differential Voltage- and Transadmittance-Mode Biquadratic Filter

The proposed digitally-controlled FD biquadratic filter is shown in Fig. 5.19. It employs five DCCDVCs (described in section 5.3), one resistor and two capacitors.

Analysis of the above circuit shown in Fig. 5.19 yields the following VM transfer functions:
DIGITALLY PROGRAMMABLE MULTIFUNCTIONAL FILTERS

\[
\frac{V_{HP}}{V_{id}} = \frac{V_{O3} - V_{O4}}{V_{id}} = \frac{s^2(R/R_{XD1})}{D(s)}
\]

(5.46)

\[
\frac{V_{BP}}{V_{id}} = \frac{V_{O3} - V_{O4}}{V_{id}} = \frac{s \left(\frac{R}{C_1 R_{XD1} R_{XD4}} \right)}{D(s)}
\]

(5.47)

\[
\frac{V_{LP}}{V_{id}} = \frac{V_{O5} - V_{O6}}{V_{id}} = \frac{(C_1 C_2 R_{XD1} R_{XD4} R_{XD5})}{D(s)}
\]

(5.48)

where \(D(s) = s^2 + \frac{R}{C_1 R_{XD3} R_{XD4}} + \frac{R}{C_1 C_2 R_{XD2} R_{XD4} R_{XD5}} \)

(5.49)

The above equations (5.46)-(5.48) indicate that the proposed filter produces high-pass, band-pass and low-pass functions. The digitally-controllable gain constants \(H_{HP} \), \(H_{BP} \) and \(H_{LP} \) are as below:

\[
H_{HP} = \frac{R}{R_{XD1}}, \quad H_{BP} = \frac{R_{XD3}}{R_{XD1}}, \quad H_{LP} = \frac{R_{XD2}}{R_{XD1}}
\]

(5.50)

In addition to the VM transfer functions, FD transadmittance-mode transfer functions \(HP, \ BP_1, \ BP_2 \) and \(LP \) are obtained as:

\[
\frac{I_{HP}}{V_{id}} = \frac{I_{O3} - I_{O4}}{V_{id}} = \frac{s^2(2R/R_{XD1} R_{XD4})}{D(s)}
\]

(5.51)

\[
\frac{I_{BP1}}{V_{id}} = \frac{I_{O5} - I_{O6}}{V_{id}} = \frac{s \left(\frac{2R}{C_1 R_{XD1} R_{XD4} R_{XD5}} \right)}{D(s)}
\]

(5.52)

\[
\frac{I_{LP}}{V_{id}} = \frac{I_{O1} - I_{O2}}{V_{id}} = \frac{(C_1 C_2 R_{XD1} R_{XD2} R_{XD4} R_{XD5})}{D(s)}
\]

(5.53)

\[
\frac{I_{BP2}}{V_{id}} = \frac{I_{O7} - I_{O8}}{V_{id}} = \frac{s \left(\frac{2R}{C_1 R_{XD1} R_{XD3} R_{XD4}} \right)}{D(s)}
\]

(5.54)

\[
K_{HP} = \frac{2R}{R_{XD1} R_{XD4}}, \quad K_{BP1} = \frac{2R_{XD3}}{R_{XD1} R_{XD5}} \]

(5.55)

\[
K_{LP} = \frac{2}{R_{XD1}}, \quad K_{BP2} = \frac{2}{R_{XD3}}
\]

where \(K_{HP} \), \(K_{BP1} \), \(K_{LP} \) and \(K_{BP2} \) are the digitally-controllable gain constants in transadmittance-mode configuration.

From equation (5.49), the pole-\(\omega_0 \) and pole-Q of the filter are calculated as:

\[
\omega_0 = \frac{R}{\sqrt{C_1 C_2 R_{XD2} R_{XD4} R_{XD5}}}
\]

(5.56)

\[
Q = R_{XD3} \frac{\sqrt{C_1 R_{XD4}}}{\sqrt{C_2 R_{XD2} R_{XD5}}}
\]

(5.57)

The passive sensitivities can be found as:
DIGITALLY PROGRAMMABLE MULTIFUNCTIONAL FILTERS

\[
S_{c_1,R_{XD_2},R_{XD_4},R_{XD_5}} = -\frac{1}{2}, \quad S_{c_2} = \frac{1}{2}
\]

\[
S_{R_{XD_3}} = 1, \quad S_{c_1} = \frac{1}{2}, \quad S_{c_2} = -\frac{1}{2}, \quad S_{R_{m}} = -\frac{1}{2}
\]

(5.58)

From equation (5.58), it can be observed that all sensitivities are low. Selecting \(R_{XD_1} = R_{XD_3} = R_{XD} \) and \(C_1 = C_2 = C \), equations (5.55) and (5.56) reduce to:

\[
\omega_0 = \frac{1}{CR_{XD}} \left(\frac{R}{R_{XD_2}} \right)
\]

(5.59)

\[
Q = \frac{R_{XD_3}}{RR_{XD_2}}
\]

(5.60)

Equations (5.59) and (5.60) reveal that the pole-\(\omega_0 \) and pole-\(Q \) can be independently controlled by digitally varying the intrinsic resistances \(R_{XD} \) and \(R_{XD_3} \) respectively.

Effect of Non-Idealities

Taking into consideration the non-idealities of the DCCDVC, the terminal relations in equation (5.15) can be expressed as:

\[
\begin{bmatrix}
V_x \\
I_{f_1} \\
I_{f_2} \\
I_{z_1} \\
I_{z_2}
\end{bmatrix} =
\begin{bmatrix}
R_{XD} & \beta_1 & \beta_2 & 0 & 0 & I_x \\
0 & 0 & 0 & 0 & 0 & V_{f_1} \\
0 & 0 & 0 & 0 & 0 & V_{f_2} \\
\alpha_1 & 0 & 0 & 0 & 0 & V_{z_1} \\
-\alpha_2 & 0 & 0 & 0 & 0 & V_{z_2}
\end{bmatrix}
\]

(5.61)

Using (5.61), the circuit shown in Fig. 5.19 yields the following non-ideal differential output voltages and currents:

\[
V_{HP} = V_{o_1} - V_{o_2} = (V_{i_1} - V_{i_2}) \frac{s^2 (R/R_{XD_1})}{D_n(s)}
\]

(5.62)

\[
V_{BP} = V_{o_3} - V_{o_4} = (V_{i_1} - V_{i_2}) \frac{s (\beta_{14} \alpha_{14} R)}{D_n(s)}
\]

(5.63)

\[
V_{LP} = V_{o_5} - V_{o_6} = \frac{\beta_{14} \beta_{15} \alpha_{14} \alpha_{15} R}{D_n(s)}
\]

(5.64)

\[
I_{MHP} = I_{o_3} - I_{o_4} = (V_{i_1} - V_{i_2}) \frac{s^2 (\alpha_{14} + \alpha_{24}) (\beta_{14} R/R_{XD_1} R_{XD_4})}{D_n(s)}
\]

(5.65)

\[
I_{MIP} = I_{o_7} - I_{o_8} = (V_{i_1} - V_{i_2}) \frac{s (\alpha_{13} + \alpha_{23}) (\beta_{13} \beta_{14} \alpha_{14} \alpha_{15} R)}{D_n(s)}
\]

(5.66)

\[
I_{MLP} = I_{o_1} - I_{o_2} = (V_{i_1} - V_{i_2}) \frac{\beta_{13} \beta_{14} \beta_{15} \alpha_{14} \alpha_{15} R}{D_n(s)}
\]

(5.67)
DIGITALLY PROGRAMMABLE MULTIFUNCTIONAL FILTERS

\[I_{MBP} = I_{D5} - I_{D6} = (V_{11} - V_{12}) \frac{s(\alpha_{15} + \alpha_{23}) \left(\frac{\beta_{11}\beta_{12}\alpha_{14}R}{C_1R_{XD1}R_{XD4}R_{XD5}} \right)}{D_n(s)} \]

From equations (5.62) to (5.68) the non-ideal differential-mode gain \(A_{DM} \) and common-mode gain \(A_{CM} \) can be expressed as:

\[A_{DM-HP} = 0.5(\beta_{11} + \beta_{21})\alpha_{11} \frac{s^2(R/R_{XD1})}{D(s)} \]

\[A_{CM-HP} = (\beta_{11} - \beta_{21})\alpha_{11} \frac{s^2(R/R_{XD1})}{D(s)} \]

\[A_{DM-BP} = 0.5(\beta_{11} + \beta_{21}) \frac{s \left(\frac{\beta_{14}\alpha_{11}\alpha_{14}R}{C_1R_{XD1}R_{XD4}} \right)}{D_n(s)} \]

\[A_{CM-BP} = (\beta_{11} - \beta_{21}) \frac{s \left(\frac{\beta_{14}\beta_{12}\alpha_{11}\alpha_{14}\alpha_{15}R}{C_1R_{XD1}R_{XD3}R_{XD4}R_{XD5}} \right)}{D_n(s)} \]

\[A_{DM-LP} = 0.5(\beta_{11} + \beta_{21}) \frac{s(\alpha_{14} + \alpha_{24}) \left(\frac{\beta_{14}\alpha_{11}R}{R_{XD1}R_{XD4}} \right)}{D_n(s)} \]

\[A_{CM-LP} = (\beta_{11} - \beta_{21}) \frac{s(\alpha_{14} + \alpha_{24}) \left(\frac{\beta_{14}\alpha_{11}R}{R_{XD1}R_{XD4}} \right)}{D_n(s)} \]

\[A_{DM-MHP} = 0.5(\beta_{11} + \beta_{21}) \frac{s^2(\alpha_{14} + \alpha_{24}) \left(\frac{\beta_{14}\alpha_{11}R}{R_{XD1}R_{XD4}} \right)}{D_n(s)} \]

\[A_{CM-MHP} = (\beta_{11} - \beta_{21}) \frac{s^2(\alpha_{14} + \alpha_{24}) \left(\frac{\beta_{14}\alpha_{11}R}{R_{XD1}R_{XD4}} \right)}{D_n(s)} \]

\[A_{DM-MBP1} = 0.5(\beta_{11} + \beta_{21}) \frac{s(\alpha_{13} + \alpha_{23}) \left(\frac{\beta_{13}\beta_{14}\alpha_{11}\alpha_{14}R}{C_1R_{XD1}R_{XD3}R_{XD4}} \right)}{D_n(s)} \]

\[A_{CM-MBP1} = (\beta_{11} - \beta_{21}) \frac{s(\alpha_{13} + \alpha_{23}) \left(\frac{\beta_{13}\beta_{14}\alpha_{11}\alpha_{14}R}{C_1R_{XD1}R_{XD3}R_{XD4}} \right)}{D_n(s)} \]

\[A_{DM-MBP2} = 0.5(\beta_{11} + \beta_{21}) \frac{s(\alpha_{15} + \alpha_{25}) \left(\frac{\beta_{14}\beta_{15}\alpha_{11}\alpha_{14}R}{C_1R_{XD1}R_{XD4}R_{XD5}} \right)}{D_n(s)} \]

\[A_{CM-MBP2} = (\beta_{11} - \beta_{21}) \frac{s(\alpha_{15} + \alpha_{25}) \left(\frac{\beta_{14}\beta_{15}\alpha_{11}\alpha_{14}R}{C_1R_{XD1}R_{XD4}R_{XD5}} \right)}{D_n(s)} \]

Where \(D_n(s) = s^2 + s \frac{\beta_{13}\beta_{14}\alpha_{23}\alpha_{14}R}{C_1R_{XD1}R_{XD4}R_{XD5}} + \frac{\beta_{12}\beta_{14}\alpha_{23}\alpha_{14}\alpha_{15}R}{C_1C_2R_{XD2}R_{XD4}R_{XD5}} \)

From equation (5.81) the non-ideal values of the pole frequency- \(\omega_{0,n} \) and pole- \(Q_n \) are obtained as:

\[\omega_{0,n} = \sqrt{\frac{\beta_{12}\beta_{14}\alpha_{23}\alpha_{14}\alpha_{15}R}{C_1C_2R_{XD2}R_{XD4}R_{XD5}}} \]

\[Q_n = \frac{R_{XD3}}{\beta_{13}\alpha_{23}} \sqrt{\frac{\beta_{12}\beta_{14}\alpha_{23}\alpha_{15}C_1R_{XD4}}{\beta_{14}\alpha_{14}C_2R_{XD2}R_{XD5}}} \]
DIGITALLY PROGRAMMABLE MULTIFUNCTIONAL FILTERS

From equation (5.82) it is clear that the effect of non-idealities for the circuit parameters \(\omega_n \) and pole-Qs can be made negligible by pre-distortion of \(R, C_i \) and \(C_s \). The CMRR for all filter responses in voltage- and transadmittance-mode as depicted from equations (5.69) to (5.80) can be represented as:

\[
CMRR = \frac{0.5(\beta_{11} + \beta_{21})}{(\beta_{11} - \beta_{21})}
\]

(5.83)

Equation (5.83) shows that the CMRR is inversely proportional to the difference in voltage transfer gain from the \(Y_1 \) and \(Y_2 \) terminals of the DCCDVC-1, which for an integrated realization would be highly matched. Thus a very high value of CMRR can be achieved.

Parasitics Study

In this section the parasitics associated with the DCCDVC are considered. The DCCDVC comprises of resistances and capacitances connected in parallel at terminals \(Y \) and \(Z \) i.e \(R_{Yi}/C_{Yi} \), \(R_{Zi}/C_{Zi} \) and \(R_{Xi} \) at terminal \(X \) where \(i = 1 \) to 5 corresponds to the \(5 \) DCCDVC. Due to the presence of these parasitics, the passive components values are changed to:

At node A: \(C_{1p} = C_{2z1}/C_{2z1}/C_{2z3}/C_{2z1}, R_{1p} = R_{z1}/R_{z2}/R_{z3}/R_{z4}, Z_{p1} = C_{1p}/R_{1p} \)

At node B: \(C_{2p} = C_{2z4}/C_{2z5}, R_{2p} = R_{z4}/R_{z5}, Z_{p2} = C_{2p}/R_{2p} \)

(5.84)

At node C: \(C_{3p} = C_{2z2}/C_{2z3}, R_{3p} = R_{z5}/R_{z6}, Z_{p3} = C_{3p}/R_{3p} \)

Since integrator blocks DCCDVC ④ and ⑤ are identical, the parasitics associated with DCCDVC are also identical i.e \(Z_{p2} = Z_{p3} \).

On re-analyzing the proposed filter associated with the above capacitances, the VM and transadmittance-mode transfer gain expressed in equations (5.46) to (5.48) and (5.51) to (5.54) are modified to:

\[
\frac{V_{HP}}{V_{id}} = \frac{V_{o1} - V_{o2}}{V_{id}} = s^2 \frac{k}{R_{X1}} + s \frac{k}{2R_{XD1}Z_{p2}} \frac{C_1 + C_2}{C_1C_2} + \frac{k}{4C_1C_2R_{XD1}Z_{p2}^2}
\]

(5.85)

\[
\frac{V_{BP}}{V_{id}} = \frac{V_{o3} - V_{o4}}{V_{id}} = s \frac{k}{C_1R_{XD1}R_{XD4}} + \frac{k}{2C_1C_2R_{XD1}R_{XD4}Z_{p2}^2}
\]

(5.86)

\[
\frac{V_{LP}}{V_{id}} = \frac{V_{o6} - V_{o6}}{V_{id}} = \frac{2Z_{p2}}{R_{XD5}(2sC_2Z_{p2} + 1)} \left[s \frac{k}{C_1R_{XD1}R_{XD4}} + \frac{k}{2C_1C_2R_{XD1}R_{XD4}Z_{p2}^2} \right]
\]

(5.87)

\[
\frac{I_{HP}}{V_{id}} = \frac{I_{o3} - I_{o4}}{V_{id}} = 2 \frac{s^2 \frac{k}{R_{XD1}} + s \frac{k}{2R_{XD1}Z_{p2}} \frac{C_1 + C_2}{C_1C_2} + \frac{k}{4C_1C_2R_{XD1}Z_{p2}^2}}{D_p(s)}
\]

(5.88)

\[
\frac{I_{BP}}{V_{id}} = \frac{I_{o7} - I_{o8}}{V_{id}} = 2 \frac{s \frac{k}{C_1R_{XD1}R_{XD4}} + \frac{k}{2C_1C_2R_{XD1}R_{XD4}Z_{p2}^2}}{D_p(s)}
\]

(5.89)
\[
\frac{I_{LP}}{V_{id}} = \frac{I_{Q1} - I_{Q2}}{V_{id}} = \frac{4Z_{p2}}{R_{XD3}R_{XD5}(2SC_{D}Z_{p2} + 1)D_{P}(s)} + \frac{k}{C_{1}C_{2}R_{XD1}R_{XD4}Z_{p2}} \\
(5.90)
\]

\[
\frac{I_{BP2}}{V_{id}} = \frac{I_{Q7} - I_{Q8}}{V_{id}} = \frac{2}{R_{XD5}} \left[\frac{k}{C_{1}R_{XD1}R_{XD4} + \frac{k}{2C_{1}C_{2}Z_{XP2}}} \right] D_{P}(s) \\
(5.91)
\]

\[
D_{P}(s) = s^2 + s \left[\frac{k}{C_{1}R_{XD3}R_{XD4}} + \frac{(C_{1} + C_{2})}{2C_{1}C_{2}Z_{XP2}} \right] + \frac{k}{C_{1}C_{2}R_{XD2}R_{XD4}R_{XD5}} + \frac{k}{2C_{1}C_{2}R_{XD3}R_{XD4}Z_{p2}} \\
+ \frac{1}{4C_{1}C_{2}Z_{p2}} \\
(5.92)
\]

and \[k = \frac{2Z_{p1}R}{2Z_{p1} + R} \]

Under the influence of parasitic elements, the pole-frequency and pole-Q of the proposed filter are modified to:

\[
\omega' = \omega \sqrt{r} \\
(5.93)
\]

and \[Q' = Q \sqrt{\frac{R}{(R_{XD3}R_{XD4}(C_{1} + C_{2}) + k)}} \]

\[r = \left[\frac{R}{R} + \frac{R_{X2}R_{X3}k}{2R_{X2}Z_{p2} + \frac{R_{X2}R_{X3}R_{X5}}{4R_{Zp2}}} \right] \]

(5.95)

From equations (5.85)-(5.94) it is clear that the filter gains and parameters are influenced by parasitic elements. With \(Z_{c1} \gg R \) and \(Z_{c2} \gg R_{X} \), \(k \) and \(r \) are approximated as \(k \approx R \) and \(r = 1 \). Consequently, equations (5.93) and (5.94) are modified to:

\[
\omega' \approx \omega \approx \sqrt{\frac{R}{C_{1}C_{2}R_{XD2}R_{XD4}R_{XD5}}} \\
(5.96)
\]

\[
Q' \approx Q \approx \sqrt{\frac{C_{1}R_{XD4}}{C_{2}R_{XD2}R_{XD5}}} \\
(5.97)
\]

Equations (5.96) and (5.97) prove that the effect of parasitic impedances can be ignored and hence the filter response can be assumed to be ideal.

Design and Verification

The performance of the proposed circuit shown in Fig. 5.19 is verified by simulation. The DCCDVC is simulated using 0.5\(\mu \)m CMOS technology parameters. Supply voltages are kept as \(V_{DD} = -V_{SS} = 2.5 \) V and \(V_{SS} = -1.6 \) V [144]. The proposed filter is designed with \(R = 1K\Omega \) and \(C_{1} = C_{2} = 150pF \).
DIGITALLY PROGRAMMABLE MULTIFUNCTIONAL FILTERS

Variation in the pole-frequencies of the filter in both voltage and transadmittance mode at different control words are shown in Table 5.2 and Table 5.3 respectively. Table 5.2 shows the variation of high-pass responses with the different control words while Table 5.3 shows the low-pass and band-pass responses. Table 5.2 shows the pole-frequency variation after applying the digital control word to the DCCDVCs. Table 5.2 and 5.3 depicts the variation of high-pass, band-pass and low-pass response by varying control words \(a_i^2, a_i^4\) and \(a_i^5\) (keeping \(a_i^4 = a_i^5\)). In Tables 5.2 and 5.3, for each of the given values of pole-frequency, the set of control words chosen for \(a_i^2, a_i^4\) and \(a_i^5\) are the same. The condition to obtain unity-gain for the low-pass output is \(a_i^4 = a_i^5\). Similarly, the conditions to get unity gain for a band-pass output is \(a_i^3 = a_i^4\) as depicted in Table 5.3. This table also shows that the variation in frequency by varying \(a_i^2, a_i^4\) and \(a_i^5\) from 1.2MHz to 12MHz with a unity gain having a pole-Q equal to 1.11.

Simulated frequency responses of the high-pass filter are shown in Fig. 5.20 which indicates that the variation in frequency from 1.2MHz to 12MHz corresponds to the digital control word as depicted in Table 5.2. The obtained VM low-pass and band-pass responses corresponding to Table 5.3 are shown in Fig. 5.21 and Fig. 5.22 respectively. The variation of pole-Q is presented in Fig. 5.23. The high-pass output for the transadmittance mode, as shown in Fig. 5.24, is obtained using the digital control words of Table 5.2. Fig. 5.25 and Fig. 5.26 show the low-pass and band-pass outputs in transadmittance mode respectively. The time domain response of VM band-pass output is shown in Fig. 5.27 which is obtained by applying a 200mV peak-peak input at a frequency of 12MHz. The THD at this signal frequency was found to be 1.8%. Its Fourier spectrum is shown in Fig. 5.28 which proves that harmonics of negligible magnitude are present at 36MHz and 48MHz. The CMRR analysis of the proposed circuit is also performed. The FD nature of the circuit is especially desirable for common-mode signals. CMRR variation for low pass output at 12MHz output is shown in Fig. 5.29. This is obtained by ensuring that mismatch in the aspect ratio of the input transistors at the differential stage of Fig. 5.9 \(i.e. M_1\) and \(M_2\) is limited to 0.1%. Figure 5.29 shows a very high CMRR, thus emphasizing a FD operation.

Table 5.2. Variation of frequency with control word for HP in voltage- and transadmittance-mode

<table>
<thead>
<tr>
<th>Curve (xa_i, xa_i)</th>
<th>Control word (xa_i, xa_i)</th>
<th>Control word (xa_i)</th>
<th>Control word (xa_i)</th>
<th>Control word (xa_i)</th>
<th>Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>000000001 0.004</td>
<td>000000001 0.004</td>
<td>000000001 0.004</td>
<td>00000001 0.004</td>
<td>1.2</td>
</tr>
<tr>
<td>B</td>
<td>00100001 0.128</td>
<td>000000001 0.004</td>
<td>000000001 0.004</td>
<td>00000001 0.004</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>10010001 0.566</td>
<td>000000001 0.004</td>
<td>000000010 0.004</td>
<td>00000001 0.004</td>
<td>6</td>
</tr>
</tbody>
</table>

110
Table 5.3. Variation of frequency with control word for LP and BP in voltage- and transadmittance-mode

<table>
<thead>
<tr>
<th>Curve</th>
<th>Frequency (MHz)</th>
<th>Control word (a_{i4})</th>
<th>Control word (a_{i5})</th>
<th>(a_3)</th>
<th>Low-pass filter section (a_{i3})</th>
<th>Band-pass filter section (a_{i3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.2</td>
<td>00000001</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>00100001</td>
<td>0.128</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>10010001</td>
<td>0.566</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>D</td>
<td>12</td>
<td>11111111</td>
<td>0.996</td>
<td>0.996</td>
<td>0.089</td>
<td>0.089</td>
</tr>
</tbody>
</table>

Table 5.4. Variation of BP filter pole-Q with control word at 12MHz for \(a_2=a_4=a_5=0.996 \)

<table>
<thead>
<tr>
<th>Curve</th>
<th>Control word (a_{i3})</th>
<th>(a_3)</th>
<th>Pole-Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>00011111</td>
<td>0.121</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>00001111</td>
<td>0.058</td>
<td>1.2</td>
</tr>
<tr>
<td>C</td>
<td>00001000</td>
<td>0.031</td>
<td>1.4</td>
</tr>
<tr>
<td>D</td>
<td>00000001</td>
<td>0.004</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Figure 5.20. Tuning of high-pass filter function with digital control word
Figure 5.21. Tuning of low-pass filter function with digital control word

Figure 5.22. Tuning of band-pass filter function with digital control word

Figure 5.23 Pole-Q variations with digital control word

Figure 5.24 High-pass variations in Trans-admittance mode
Figure 5.25 Low-pass variations in Trans-admittance mode

Figure 5.26 Band-pass variations in Trans-admittance mode

Figure 5.27 Band-pass output at 12MHz

Figure 5.28 Fourier spectrum of band-pass output at 12MHz
OTA Equivalent Circuit

The circuit of Fig. 5.19 is also implemented by using a digitally-programmable operational transconductance amplifier [79] as shown in Fig. 5.30.

5.6 Digitally-Programmable Mixed-Mode Quadrature Oscillator

The current-controlled current conveyor of Fig. 5.5 can be converted into a digitally-programmable current controlled conveyor (DPCCCI) by incorporating the current division network (CDN) shown in the circuit of CCCII [144] (as discussed in Section 5.3). The DPCCCI is characterized by the following port relationship:

\[i_y = 0; \ V_x = V_y + i_x R_{xd}, \text{ and } i_z = pi_x \] \hspace{1cm} (5.98)
DIGITALLY PROGRAMMABLE MULTIFUNCTIONAL FILTERS

\[
R_{XD} = \left[8\mu_nC_{ox} \frac{w}{h} aI_b \right]^{-1/2}
\]

(5.99)

where \(I_b \) is the bias current applied at the input of the CDN. From equation (5.99), it can be seen that \(R_{XD} \) can be digitally controlled by varying the control parameter \(a \) for a fixed value of the bias current.

The proposed digitally programmable mixed-mode quadrature oscillator is shown in Fig. 5.31. Two voltage outputs in phase quadrature are obtained at the nodes marked \('V_{01}' and \('V_{02}'\). Two current-mode quadrature outputs are obtained at the high impedance nodes marked \('I_{01}' and \('I_{02}'\).

![Figure 5.31. Proposed digitally programmable mixed-mode quadrature oscillator](image)

The characteristic equation of the above circuit is:

\[
s^2 + \frac{1}{s\left[\frac{1}{R_{XD2}C_2} - \frac{1}{R_{XD1}C_2}\right] + \frac{1}{R_{XD1}R_{XD2}C_1C_2}} = 0
\]

(5.100)

Using (5.100), the frequency and condition of oscillation (FO and CO respectively) can be obtained as:

\[
\text{FO: } \omega_o = \frac{1}{\sqrt{R_{XD1}R_{XD2}C_1C_2}}
\]

(5.101)

\[
\text{CO: } R_{XD1} \leq R_{XD2}
\]

(5.102)

Selecting \(C_1 = C_2 = C \), equation (5.101) reduces to

\[
\text{FO: } \omega_o = \frac{1}{C\sqrt{R_{XD1}R_{XD2}}}
\]

(5.103)

The above equation shows that the frequency of oscillation can be independently controlled by varying \(C \) without affecting the condition of oscillation. The current outputs, separated in phase by 90°, can be written as:

\[
I_{02} = -jkI_{01}
\]

(5.104)

where the constant \('k' \) is defined as:

\[
k = \frac{1}{\omega_oR_{XD1}C_2}
\]

(5.105)

It can be deduced that for \(k = 1 \), equal amplitudes may be obtained for the quadrature current outputs.
The two voltage outputs are related as:

\[V_2 = +jmV_1 \quad (5.106) \]

where \(m = \frac{1}{\omega_0 R X D I C_1} \quad (5.107) \)

Equation (5.106) shows that the two voltage outputs will be in phase quadrature and will have equal amplitudes for \(m = 1 \), according to (5.107).

Design and Verification

The proposed oscillator is simulated by using \(C_1 = C_2 = 20\mathrm{pF} \) and \(I_{b1} = I_{b2} = 225\mu\mathrm{A} \). The supply voltages are kept at \(\pm 2.5\mathrm{V} \). The frequency of oscillation obtained through simulation for a given control word \([0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1]\) is found to be 19.32 MHz and the obtained quadrature voltage and current waveforms is shown in Fig. 5.32 and Fig. 5.33.

The performance of the proposed oscillator is analysed by plotting the FFT for the generated outputs. The obtained frequency spectrum is shown in Fig. 5.34. The THD is found to be 4% at 19.32MHz through simulation. Digital control of the frequency of oscillation using the control words of the two DPCCCIIs is also explored. Towards this end, the digital control parameter \((\alpha)\) is varied for the two DPCCCIIs. The values of oscillation frequency obtained for various choices of control words is presented in Table 5.5.

The entries in Table 5.5 can also be plotted graphically to give an indication of the linear range of operation of the proposed oscillator. From Fig. 5.35, it can be seen that the frequency varies linearly with the control word with values ranging from 11.78 MHz to 19.32 MHz.

Table 5.5 Variation of frequency of oscillation with control word

<table>
<thead>
<tr>
<th>Control word ([a_7 \ a_6 \ a_5 \ a_4 \ a_3 \ a_2 \ a_1 \ a_0])</th>
<th>Digital Control Parameter ((\alpha))</th>
<th>Frequency ((\mathrm{MHz}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>00001111</td>
<td>0.058</td>
<td>11.78</td>
</tr>
<tr>
<td>00010100</td>
<td>0.078</td>
<td>12.37</td>
</tr>
<tr>
<td>00011111</td>
<td>0.121</td>
<td>13.55</td>
</tr>
<tr>
<td>00110010</td>
<td>0.195</td>
<td>15.42</td>
</tr>
<tr>
<td>00111111</td>
<td>0.246</td>
<td>16.44</td>
</tr>
<tr>
<td>01111111</td>
<td>0.496</td>
<td>19.32</td>
</tr>
<tr>
<td>11111111</td>
<td>0.996</td>
<td>20.20</td>
</tr>
</tbody>
</table>

116
Figure 5.32. Quadrature voltage outputs

Figure 5.33. Quadrature current outputs

Figure 5.34. Obtained frequency spectrum for quadrature voltage outputs in the circuit of Fig. 5.31
5.7 Conclusion

In this Chapter, a novel digitally programmable CM first-order multifunctional filter using DPCCII and CCCII is presented. The realized filter can provide first-order CM low-pass, high-pass and all-pass responses without any component matching constraints. The pole frequency of the continuous time filter is directly proportional to an N-bit digital control word which offers programmability.

Next, a low-voltage digitally-programmable second-order multifunctional filter is realized. Notable features of the filters include operation at low voltage which is a desirable feature in the era of low power electronics. Secondly, filter pole frequency and pole-Q are independently controlled. Filter pole-Q is proportional to the control word applied to DPCCII-③.

The third realized filter is a voltage-and transadmittance-mode biquadratic filter with digital control of filter parameters employing a new active element. The active element used is a DCCDVC which exhibits differential signal handling capability and digital tunability of the conveyor’s X-terminal resistance making it an ideal choice for fully integrated controlled filters. The operation of the proposed circuit in voltage-and transadmittance-mode makes the new circuit versatile. Non-idealities of the active element are also considered along with the parasitics involved, so as to evaluate the actual performance of the proposed filter. The results obtained are as per theoretical predictions and promise wide utility of the circuit with future scope of actual fabrication in CMOS technology.

Finally, this Chapter presents a digitally-programmable mixed-mode oscillator with which quadrature current outputs at high impedance and quadrature voltage outputs at low impedance are available simultaneously. The generated quadrature waveforms exhibited low harmonic distortion. Digital control of the frequency of oscillation is also demonstrated. The linearly tunable range of frequency was found to be approximately from 11.78MHz – 19.32MHz. The designed oscillator is CMOS compatible and suitable for monolithic implementation by virtue of grounded capacitors only.
CHAPTER 6

CONCLUSION

This Chapter summarizes the work carried out within this thesis by providing an overview of the contributions made in each individual Chapter. The most notable contributions are highlighted as milestones and deliverables. Suggestions and possible future avenues of research are pointed out towards the end of this Chapter.

6.1 Contribution

This thesis proposes a number of novel circuits in the widely-accepted area of analog signal processing. All of the circuits proposed employ second-generation current conveyors (CCII, DVCC, CCCII, DXCCII and DD-DXCCII) which have been proven to be very versatile building blocks. The circuits so designed exhibit single-ended and FD operation. The following paragraphs outline the contributions made within this thesis.

A FD, first-order, all-pass filter and a second-order all-pass/notch filter is presented in Chapter 3. The proposed first-order filter employs only a single active element with three grounded passive components. This is a substantial improvement over the design in [66] (the most recent reported similar design) wherein, even though a single active element is employed but some passive components are not grounded. Similar improvements can be observed in the design and characteristics of the second-order all-pass and notch filter. In addition, no oscillator was designed in [66], while the proposed circuit provides FD first-order, second-order and oscillator responses [see Table 3.2]. Finally, the most notable contribution in this chapter is the hardware realization of a FD filter since most similar reported circuits have been designed and verified using software simulation.

The CM first-order filter designed in Chapter 4 shows multiple responses while making use of a single active element i.e. a DXCCII. Low-pass, high-pass and all-pass responses are obtained simultaneously. The filter employs grounded passive components. In comparison, filters reported in [29, 82, 85, 87, 88] also employ a single active element but provides only an all-pass response. With the help of an integrator, the proposed filter section realizes a CM and VM oscillator. Similar oscillators are
reported in [85, 88] but the number of passive components used is large and the operating frequency is low [see Table 4.1]. As in Chapter 3, hardware realization of the DXCCII is attempted and the multiple responses are obtained.

Lastly in Chapter 5, a new digitally-controlled building block (DCCDVC) is developed. Using this building block, a digitally-controlled FD voltage- and transadmittance-mode biquadratic filter is obtained. When compared with the state-of-the-art, it was found that none of the reported circuits exhibit all features i.e. FD operation, digital control, voltage and transadmittance mode simultaneously.

6.2 Milestones and Deliverables

The aim of this thesis is to develop and design novel circuits realizable in integrated circuit form, while operating in voltage-, current- and mixed-mode that have the potential to be widely applied in the field of analog signal processing. Towards this end, most of the designs and implementations are carried out by employing minimum active and passive components. Obtained configurations are single-ended as well as FD filters and oscillators based on second generation current conveyors. In addition, bi-phase amplifiers are also designed and their application is explored in the context of precision rectifiers.

Chapter-1 of the thesis highlights the need of analog signal processing in an increasingly digital world. Basic analog signal processing modules using different active and passive elements is discussed next. A comparison of CM and VM approach is also included. Finally, approaches for the design of voltage-, current- and mixed-mode analog modules are presented.

Chapter-2 starts by describing two filters. These are CM first-order and VM second-order filters; both use CCIIIs. The CM filter provides multiple responses simultaneously without the need of component matching constraints. The VM second-order filter provides multiple responses. Its hardware implementation is feasible using a CFOA (AD-844) for the realization of CCII+. Non-ideal study for both the filters prove that the filter parameters are least affected and the sensitivities are low in magnitude. These filters are then used to design two multiphase oscillators. The eight-phase oscillator provides VM and CM outputs in different phases while employing only grounded passive components. A four-phase VM oscillator is also presented which again employs only grounded components. Finally, a bi-phase amplifier is described which is utilized to design a half- and full-wave precision rectifier. The rectifier is designed without diodes and its operating limit is 20mV and 1MHz (See Table 2.3).

FD modules employing DVCC are described in Chapter 3. Processing of a differential signal by these modules lead to an increased CMRR, higher bandwidth etc. Possibility of realizing the proposed filters by employing reduced number of passive components is also explored. Simulation results show good sensitivity performance with minimal influence of non-ideal and parasitic effects. In a similar
CONCLUSION

reported design [66], floating components are used, in contrast to a minimum number of grounded passive components within the proposed filter. Lastly, a precision rectifier based on bi-phase amplifier is also given and is realized without employing diodes. In addition, this design is an improvement over the design presented in Chapter 2 in that it has a lesser number of passive components.

Chapter 4 presents a hardware implementation of the analog building block DXCCII by using the commercially available IC AD-844. With the help of this building block, a first-order CM multifunctional filter is realized. A tunable VM first-order and an \(n^{th} \)-order filter is also realized using DD-DXCCII. Analysis proves that the realized filters are unaffected by parasitics. Tunability is the most outstanding feature of the realized filters since it is not supported in other similar designs [149]. Next, a cascaddable second-order universal CM filter is also presented using DD-DXCCII and DXCCII. The designs are realized with minimum active and passive components. In addition to CM outputs, two transresistance mode outputs are also achieved without the need of additional components. Next, a multiphase oscillator is designed by utilizing the all-pass output of the DXCCII filter. The oscillator so realized operates both, in CM and VM, and with least number of passive components. The THD of the filter and oscillator is acceptable upto 10 MHz. The band-pass output of the second-order CM filter (designed using DD-DXCCII and DXCCII) is used to realize a VM and CM three-phase oscillator. Finally, a third-order tunable mixed-mode oscillator is also presented. This provides CM and VM outputs. Current outputs are available at the high impedance node, so easy cascadability is possible.

In Chapter 5, digitally programmable multifunctional filters are presented which are based on CCII and CCCII. Two digitally-controlled building blocks, the DPCCII and the DCCDVC are also discussed. With the help of these, the analog module parameters can be digitally controlled. Literature study reveals a lack of digital tuning facilities in similar first-order multifunctional filters and second order FD voltage- and transadmittance-mode filters.

6.3 Suggestions for Future Work

This work has been left at a very strategic point in the context of analog signal processing. Beyond this point, there are a number of obvious and feasible avenues that could be explored further. These would serve not only as a logical continuation of this work, but also enrich this rapidly expanding area of research. Some of these avenues are listed below:

1) The modules employed within two of the devices in this thesis operate in single-ended mode. Namely, these devices are CCII and DXCCII. The next obvious step would be to operate these
modules in the FD mode. This would naturally lead to an increased bandwidth and signal-to-noise ratio.

2) The devices designed within this thesis were based on a minimum of 0.25 μm CMOS technology. This limited the operating frequency range between few tens of KHz to few tens of MHz. An obvious way to increase the maximum operating frequency would be to redesign these devices using nanometre CMOS technology. This would make the modules based on these designs suitable for use in mobile telephony applications thereby vastly increasing their versatility and acceptance.

3) Another factor that has a negative effect on the maximum operating frequency is the presence of active RC components within the design. However, designing a module with no RC components presents a number of hurdles. An alternate solution that could be explored is to redesign the proposed modules in such a way that only a single resistor (and no capacitor in series with this resistor) is connected to the X-terminal of the CCIIs, DVCCs and DXCCIIs. In addition, designs could be explored that avoid connecting resistors to the Y and/or Z terminals of CCIIs, DVCCs and DXCCIIs.

4) Digital tunability is another very important criterion from a monolithic implementation point of view. In this thesis, digital control modules are only applied to CCII and CCCII. Offering this feature in DVCC and DXCCII is another viable possibility that could be looked into.