REFERENCES

42. Gopalan, MA & Anbuselvi, R 2007,'On the Diophantine Equation $x^2+bxy+cy^2=1$, Actaciencia Indica', vol. 30, no. 4, pp.1785-1787.
50. Gopalan, MA & Jayakumar, P 'On the system of double equations: $b+T =x^2$, $\frac{b}{2} + T = y^2$, $T\neq asquare$ International Journal Acta Ciencia Indica, vol. 32 no. 4, pp. 1465-1468.

57. Gopalan, MA & Sangeetha, G On the heptic diophantine equations with 5 unknowns $x^4 - y^4 = (X^2 - Y^2)z^5$

58. Gopalan, MA & Vijayashankar, A 'solutions of quintic equation with five unknowns $x^5 - y^5 = 2(z^2 - w^2)P^3$', International Journal of Pure and Applied Mathematics

60. Gopalan, MA, Kavitha, A & Vidhyalakshmi, S 2013, 'On the non-homogeneous cubic equation with four unknowns $x^3 + y^3 = 7^{2n}zw^5$; Accepted for Publication in international journal of Modern Engineering Research(IJMER). vol. 3, no. 3.

63. Gopalan, MA, Sumathi, G & Vidhyalakshmi, S 'Integral solutions of nonhomogeneous ternary quintic equation in terms of pells sequence $x^3 - y^3 + xy(x + y) = 2Z^5$; accepted for Publication in JAMS(Research India Publication

65. Gopalan, MA, Vidhyalakshmi, S & Lakshi, K 2012, 'Integral Solutions of the sextic equation with five unknowns $x^3 + y^3 = z^3 + w^3 + 3(x + y)T^5$, IJESRT, pp. 502-504.

68. Goplan, MA & Kaliga Rani 2010, 'On the Transcendental equation $x + g\sqrt{x} + y + h\sqrt{y} = z + g\sqrt{z}$', International Journal of Mathematical Sciences, vol. 9, no. 1-2, pp. 177-182.

