Chapter 2

Distance Compatible Set-labeling of Graphs

We define distance compatible set-labeling (dcs) of a graph G as an injective set-assignment $f : V(G) \to 2^X$, X a nonempty ground set, such that the corresponding induced function $f^{\oplus} : V(G) \times V(G) \to 2^X - \emptyset$, defined by $f^{\oplus}(uv) = f(u) \oplus f(v)$ satisfies $|f^{\oplus}(uv)| = k_f(u,v)d(u,v)$ for all distinct $u, v \in V(G)$, where $d(u,v)$ is the distance between u and v and $k_f(u,v)$ is a constant, not necessarily an integer. We define dispersible dcs-graphs, edge-dispersible dcs-graphs, (k,r)-arithmetic dcs-graphs and k-uniform dcs-graphs as special cases of dcs-graphs. We define the dcs index δ_d of graph G as the minimum cardinality of the ground set X such that G admits a dcs. In this chapter we initiate a study of above mentioned concepts.

2.1 Introduction

Acharya [1] introduced the notion of set-valuation as set analogue of number valuation. For a (p,q) graph $G = (V,E)$ and a nonempty set X of cardinality n, Acharya [2] defined set-indexer of G as an
injective set-valued function \(f : V(G) \to 2^X \) such that the function \(f^{\oplus} : E(G) \to 2^X - \emptyset \) defined by \(f^{\oplus}(uv) = f(u) \oplus f(v) \) for every \(uv \in E(G) \) is also injective, where \(2^X \) is the set of all subsets of \(X \) and “\(\oplus \)” is the symmetric difference of sets.

B. D. Acharya and Germina K. A. [6] introduced the particular instance of set-indexers when a metric (instead of topology), especially the size of the symmetric difference, is associated to edges. If this size is proportional to path-distance then, the graph is 1-1 embeddable. They [6] initiated a problem, whether we can study those graphs \(G = (V,E) \) that admit an injective ‘set-valuation’ \(f : V \to 2^X, X \) being a nonempty ‘ground set’, such that the cardinality of the symmetric difference \(f^{\oplus}(uv) = (f(u) - f(v)) \cup (f(v) - f(u)) \) is proportional to the usual path-distance \(d(u,v) \) between \(u \) and \(v \) in \(G \) for all pairs of distinct vertices \(u \) and \(v \) in \(G \). They called such a set-valuation \(f \) of \(G \), if it exists, a distance-compatible set-labeling (dcsl) of \(G \), and the ordered pair \((G,f) \), a distance-compatible set-labeled (dcsl) graph. Thus we have the following definition.

Definition 2.1.1. Let \(G = (V,E) \) be any connected \((p,q)\) graph. A distance compatible set-labeling of a graph \(G \) is an injective set-assignment \(f : V(G) \to 2^X, X \) a nonempty ground set, such that the
corresponding induced function $f^\oplus : V(G) \times V(G) \rightarrow 2^X - \emptyset$, defined by $f^\oplus(uv) = f(u) \oplus f(v)$ satisfies $|f^\oplus(uv)| = k_{(u,v)} f d(u, v)$ for all distinct $u, v \in V(G)$, where $d(u, v)$ is the distance between u and v and $k_{(u,v)} f$ is a constant, not necessarily an integer. G is distance compatible set-labeled (dcsl) graph if it admits a dcsl. We denote a dcsl-graph G with a dcsl, f by the ordered pair (G, f). The corresponding ground set is called a dcsl-set.

Figure 2.1 gives a dcsl graph on five vertices.

One can identify various types of dcsl’s of a graph G. A dcsl f of a (p, q)-graph G is dispersive if the constants of proportionality $k_{uv} f$ with respect to f, $u \neq v$, $u, v \in V(G)$ are all distinct and G is dispersible if it admits a dispersive dcsl. A dispersive dcsl f of G is (k, r)-arithmetic, if the constants of proportionality with respect to f can be arranged
in the arithmetic progression, $k, k + r, k + 2r, \ldots, k + (q - 1)r$ and if G admits such a dcsl then G is a (k, r)-arithmetic dcsl-graph. A dcsl f of G is k-uniform if all the constants of proportionality with respect to f are equal to k, and if G admits such a dcsl then, G is called a k-uniform dcsl-graph.

Definition 2.1.2. dcsl index of a dcsl-graph (G, f) is the minimum cardinality of the dcsl-set and it is denoted by $\delta_d(G)$.

The main aim of this chapter is to present an account of what we know of such graphs and their corresponding distance compatible set-labeling.

As well known, apart from theoretical interest in the study of the distance matrix, such as the realization of a given matrix as the distance matrix of a graph (see Wai-Kai Chen [23]) it has found applications in many practically interesting areas such as Quantitative Structure-Activity Relation (QSAR) in discrete mathematical chemistry (see S.C. Basak *et. al.*, [8]) and, studies on the effect of indirect qualitative relationships between individuals in a social network (see Fiksel [13] and Kovchegov [18]).
Remark 2.1.1. Let $G = (V, E)$ be any (p, q)-graph, M be an arbitrary nonempty proper subset of V and f be the corresponding dcsl. Then, the M-Weiner index $W_M(G)$ may be defined as the sum of the entries in the upper triangular half of the M-distance matrix $D_M(G)$; by a partial Weiner index $W'(G)$, we mean the M-Weiner index of G for some nonempty proper subset M of $V(G)$ and the well known Weiner index $W(G)$ (see Trinajstic, [22]) is then seen as the M-Weiner index with $M = V(G)$.

An interesting question for chemists would be the following.

Problem 2. Consider any structure-activity relationship \mathcal{R} of a molecular graph that has been identified to be well correlated with the Weiner index. Is it possible to achieve such a correlation using M-Weiner index for a low cardinality dcsl-set X as possible? [Choice of marker sets X in the molecular graph might be very crucial and hence might involve deeper insights into the molecular characteristics.]

2.2 Classes of dcsl-graphs

Given a dcsl-graph (G, f), its definition implies that

$$|f^\otimes(uv)| = k_{uv}^f d(u, v), \text{ for all } u, v \in V(G), \ u \neq v,$$ \hspace{1cm} (1)
where k_{uv}^f’s are the constants of proportionality. Let $\mathcal{K}_f(G) = \{k_{uv}^f : u \neq v, \ u, v \in V(G)\}$. Note that in the case of a dispersible dcsl-graph (G, f) of order n, $\mathcal{K}_f(G)$ contains $\frac{n(n+1)}{2}$ distinct numbers and in the case of k-uniform dcsl-graphs it contains a single element k.

Lemma 2.2.1. If the complete graph K_n is a dcsl-graph then for any dcsl f of K_n,

$$|f \oplus (uv)| = k_{uv}^f, \text{ for all distinct } u, v \in V(K_n).$$ \hspace{1cm} (2)

Proof. This follows from the fact that a graph is complete if and only if every two distinct vertices in the graph are at unit distance. \hfill \square

Lemma 2.2.2. Every graph has a dcsl.

Proof. Let G be any graph of order n. Let X be any set such that the cardinality of the power set of X is greater than the order of G. Define an injective set valuation $f : V(G) \rightarrow 2^X$ such that $f(v_i) = X_i, X_i \subseteq X$. Let $k_{(u,v)}^f = \frac{|f \oplus (uv)|}{d(u,v)}$ for every $u, v \in V(G)$. Then, $| f \oplus (uv) | = k_{(u,v)}^f d(u,v)$ for every $(u, v) \in V(G) \times V(G)$. Thus, f is a dcsl and G is a dcsl-graph. \hfill \square
2.3 Dispersible dcl-graphs

As defined already, a dcl f of a graph G is *dispersive* if the constants of proportionality k_{uv}^f, $u \neq v$, $u, v \in V(G)$ are all distinct and G is *dispersible* if it admits a dispersive dcl.

A dispersible labeling of path P_4 is illustrated in Figure 2.2.

![Figure 2.2: A dispersible dcl of P_4](image)

A natural question that arises is what are the classes of graphs which admits a dispersive dcl. Theorem 2.3.1 is an attempt to answer this question.

Theorem 2.3.1. K_n is dispersible for all $n \geq 1$.

Proof. Let $V(K_n) = \{v_1, v_2, \ldots, v_n\}$. Let $X = \{1, 2, \ldots, 2^{n-1}\}$. Define $f : V(K_n) \to 2^X$ by $f(v_i) = \{1, 2, 3, \ldots, 2^{i-1}\}$, $1 \leq i \leq n$. Clearly, $f(v_i) \subset f(v_j)$, for $i < j$. Now, we shall prove that the constants of
Figure 2.3: Dispersive dcsl of complete graphs K_n for $n = 2, 3$ and 4

proportionality k_{uv}^f are all distinct, for distinct $u, v \in V(K_n)$.

\[
k_{(v_1,v_i)}^f = |f^\oplus(v_1v_i)|, \quad 2 \leq i \leq n = \{1, 2^2 - 1, 2^3 - 1, \ldots, 2^{n-1} - 1\}
\]

\[
k_{(v_2,v_i)}^f = |f^\oplus(v_2v_i)|, \quad 3 \leq i \leq n = \{2^2 - 2, 2^3 - 2, \ldots, 2^{n-1} - 2\}
\]

\[
k_{(v_3,v_i)}^f = |f^\oplus(v_3v_i)|, \quad 4 \leq i \leq n = \{2^3 - 2^2, 2^4 - 2^2, \ldots, 2^{n-1} - 2^2\}
\]

\[
\vdots
\]

\[
\vdots
\]

\[
\vdots
\]

\[
k_{(v_{n-1},v_n)}^f = |f^\oplus(v_{n-1}v_n)| = 2^{n-1} - 2^{n-2}.
\]

Hence, $k_{(u,v)}^f$ are distinct for all distinct $u, v \in V(K_n)$, whence the dcsl f of K_n is dispersive, so that K_n is dispersible dcsl-graph. \qed
Remark 2.3.1. Figure 2.4 shows that, $K_{1,2} \cong P_3$ and star $K_{1,3}$ is dispersible. We strongly feel that $K_{1,n}$ is dispersible for all finite values of n. Hence we pause the following Conjecture.

![Figure 2.4: Dispersive dcs of $K_{1,2}$ and $K_{1,3}$](image)

Conjecture 1. The star $K_{1,n}$ is dispersible dcs-graph for all finite values of n.

Problem 3. Characterization of dispersible dcs-graph is an open problem for further investigation.

Problem 4. For any dcs-graph G, the dispersivity $\nu(G)$ of G is the least cardinality of a ground set X such that G admits a dispersive dcs. Finding $\nu(G)$ of a given graph G is an interesting problem. In particular find $\nu(K_n)$.
2.3.1 Edge-dispersible dcs{l}-graphs

As we have seen in the previous section all graphs need not be dispersible. However, to identify the characteristics of a graph model, sometimes it is enough to consider the constants of proportionality $k^f_{(u,v)}$ whenever uv is an edge of G. Hence, we define a new concept namely, edge-dispersible dcs{l}-graphs as follows.

Definition 2.3.1. A dcs{l} f of a (p,q)-graph G is edge-dispersive if the constants of proportionality $k^f_{(u,v)} : uv \in E(G)$ are all distinct and G is edge-dispersible graph if it admits an edge-dispersive dcs{l}.

Remark 2.3.2. All dispersible dcs{l}-graphs are edge-dispersible. However the converse need not be true. We may observe that dispersible dcs{l}-graphs are subclass of edge-dispersible dcs{l}-graphs. In the case of complete graphs dispersibility and edge dispersibility are the same, since every pair of vertices in a complete graph is adjacent. Following results depicts some classes of edge-dispersible dcs{l}-graphs.

Theorem 2.3.2. The star $K_{1,n}$ of order $n+1$ is edge-dispersible dcs{l}-graphs.

Proof. Consider $K_{1,n}$ with $n+1$ vertices. Let $V(K_{1,n}) = \{v_0, v_1, \ldots, v_n\}$. Let $X = \{1, 2, 3, \ldots, k\}$, where $k = \frac{n(n+1)}{2}$.
Define \(f : V(K_{1,n}) \to 2^X \) defined by
\[
f(v_0) = \emptyset \\
f(v_1) = \{1\} \text{ and,} \\
f(v_i) = \{\max(f(v_{i-1})) + j, \ 1 \leq j \leq i\}, \ 2 \leq i \leq n. \text{ Then,} \\
| f^{(e)}(v_i) | = | f(v_0) \oplus f(v_i) | = | \{\max(f(v_{i-1})) + j, \ 1 \leq j \leq i\} | = i, \ 1 \leq i \leq n. \text{ That is, } k_{(v_0,v_i)}^f = i, \ 1 \leq i \leq n. \text{ Therefore } K_{1,n} \text{ is edge-dispersible.}
\]

Theorem 2.3.3. The paths \(P_n \) are edge-dispersible dcsl-graphs.

Proof. Let \(P_n \) be a path on \(n \) vertices. Let \(v_0, v_1, \ldots, v_{n-1} \) be the \(n \) vertices of \(P_n \). Let \(X = \{1,2,3,\ldots,l\}, l = \frac{n(n-1)}{2}. \)

Define \(f : V(P_n) \to 2^X \) defined by
\[
f(v_0) = \emptyset; \\
f(v_1) = \{1\}; \text{ and,} \\
f(v_i) = f(v_{i-1}) \cup \{\max(f(v_{i-1})) + j, \ 1 \leq j \leq i\}, \ 2 \leq i \leq n. \text{ Then,} \\
| f^{(e)}(v_i) | = | f(v_{i-1}) \oplus f(v_i) | = | \{\max(f(v_{i-1})) + j, \ 1 \leq j \leq i\} | = i = i(d(v_{i-1}v_i)). \text{ That is, } k_{(v_{i-1},v_i)}^f = i. \text{ Therefore, } P_n \text{ is edge-dispersible.} \]

Theorem 2.3.4. Every complete bipartite graph is edge-dispersible.

Proof. Let \(X \) and \(Y \) be the bipartition of the vertex set of \(K_{m,n} \), where \(V(X) = \{u_1,u_2,\ldots,u_m\} \)
\(V(Y) = \{v_1, v_2, \ldots, v_n\} \).

Let \(X^* = \{1, 2, \ldots, mn\} \).

Define \(f : V(K_{m,n}) \to 2^{X^*} \), defined by

\[
\begin{align*}
 f(u_1) & = \emptyset; \\
 f(u_i) & = \{n + 1, n + 2, \ldots, in\}, \ 2 \leq i \leq m; \\
 f(v_j) & = \{1, 2, \ldots, j\}, \ 1 \leq j \leq n. \text{ Then,} \\
 | f^{\oplus}(u_1v_j) | & = | \{1, 2, \ldots, j\} | = j \text{ and, } | f^{\oplus}(u_iv_j) | = (i - 1)n + j, \ 2 \leq i \leq m, \ 1 \leq j \leq n. \text{ Now, } | f^{\oplus}(u_1v_j) | = | f^{\oplus}(u_iv_j) | \text{ implies } j = (i - 1)n + j, \text{ which implies } i = 1, \text{ not possible since, } 2 \leq i \leq m. \\
\end{align*}
\]

Thus \(K_{m,n} \) is edge-dispersible.

\[\square\]

2.4 \((k, r)\)-arithmetic dcsl-graphs

Again, recall that a dcsl \(f \) of a graph \(G = (V, E) \) is \((k, r)\)-arithmetic if the constants of proportionality with respect to \(f \) can be arranged in the arithmetic progression, \(k, k + r, k + 2r, \ldots, k + (q - 1)r \) and if \(G \) admits such a dcsl then, \(G \) is a \((k, r)\)-arithmetic dcsl-graph.

For example, \(K_4 \) is a \((1, 1)\)-arithmetic dcsl-graph, as evident from Figure 2.5.

Theorem 2.4.1. \ The path \(P_n \) is \((1, 1)\)-arithmetic dcsl if \(n \leq 3 \).
Proof. The subsets \emptyset, $\{1\}$ and $\{1,2,3\}$ of a set $X = \{1,2,3\}$, respectively assigned to the vertices v_1, v_2 and v_3 of P_3, we get a $(1,1)$-arithmetic dcsl-graph. Also \emptyset and $\{1\}$ gives the $(1,1)$-arithmetic labeling of P_2 and \emptyset gives a $(1,1)$-arithmetic labeling of P_1.

A $(1,1)$-arithmetic labeling of P_3 is shown in Figure 2.6.
Remark 2.4.1. We proved that paths P_n are $(1,1)$-arithmetic dcsl-graphs if $n \leq 3$. We strongly believe that paths are not $(1,1)$-arithmetic dcsl-graphs for higher values of n. Thus we pose the Conjecture 2.

Conjecture 2. Path P_n is $(1,1)$-arithmetic dcsl-graph if and only if $n \leq 3$.

In this section, we also establish that the complete graph K_n admits a (k, r)-arithmetic dcsl if and only if $n \leq 4$ and $k = r$, a result which is strikingly similar to a result on ‘graceful’ complete graphs (see Golomb [15]).

Theorem 2.4.2. The complete graph K_n is a (k, r)-arithmetic dcsl-graph if and only if $n \leq 4$ and $k = r$.

Proof. Necessity: Let K_n admit a (k, r)-arithmetic dcsl $f : V(K_n) \rightarrow 2^X$, where $X = \{x_1, x_2, \ldots, \}$. Let $V(K_n) = \{v_1, v_2, \ldots, v_n\}$. We shall prove the theorem in two Parts.

PART 1: In this part, we prove that if K_n is (k, r)-dcsl, then $k = r$.

We need to prove this in two cases, namely when the emptyset \emptyset is or is not assigned to a vertex of K_n.

Case 1: $f(v_i) = \emptyset$ for some $v_i \in V(K_n)$.

Without loss of generality, assume $f(v_1) = \emptyset$. Since f is a (k, r)-arithmetic dcs, there exists an edge say $v_1v_j \in E(K_n)$ such that $|f^\oplus(v_1v_j)| = k$. Without loss of generality, assume that $|f^\oplus(v_1v_2)| = k$ so that $f(v_2) = \{x_1, x_2, \ldots, x_k\}$. Again, since f is a (k, r)-arithmetic dcs, there exists an edge in K_n such that the cardinality of the symmetric difference of the subsets of X assigned to its end vertices is $k + r$. For this, there are two possibilities viz., $|f^\oplus(v_1v_t)| = k + r$ or $|f^\oplus(v_2v_t)| = k + r$. Without loss of generality, assume $v_t = v_3$. Then, we have either $|f^\oplus(v_2v_3)| = k + r$ or $|f^\oplus(v_1v_3)| = k + r$.

First, we consider the possibility that $|f^\oplus(v_1v_3)| = k + r$.

Then, we have the following possibilities.

$f(v_3) = \{x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_r\}$

or $f(v_3) = \{y_1, y_2, \ldots, y_{k+r}\}$.

When $f(v_3) = \{x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_r\}$, we get $|f^\oplus(v_2v_3)| = r$, which is not possible. Hence, $f(v_3) = \{y_1, y_2, \ldots, y_{k+r}\}$. This implies $|f^\oplus(v_2v_3)| = k + k + r = 2k + r$.

Therefore, the only possibility of getting $|f^\oplus(v_2v_3)| = k + 2r$ occurs when $k + 2r = 2k + r$, which implies $k = r$.

Next, we consider the possibility that $|f^\oplus(v_2v_3)| = k + r$.

In this case, there arise the following possibilities.
Chapter 2

48

\(f(v_3) = \{x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_{k+r}\} \)

or \(f(v_3) = \{y_1, y_2, \ldots, y_r\} \)

When \(f(v_3) = \{x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_{k+r}\} \), \(|f^\oplus(v_1v_3)| = 2k + r \); and when \(f(v_3) = \{y_1, y_2, \ldots, y_r\} \), \(|f^\oplus(v_1v_3)| = r \), which is not possible.

Hence, \(f(v_3) = \{y_1, y_2, \ldots, y_{k+r}\} \). Therefore, the only possibility of getting \(|f^\oplus(v_1v_3)| = k + 2r \) occurs when \(k + 2r = 2k + r \), which implies \(k = r \).

Case 2: \(f(v_i) \neq \emptyset \) for any \(v_i \in V(K_n) \).

Without loss of generality, assume \(f(v_1) = \{x_1, x_2, \ldots, x_t\} \). Since \(f \) is a \((k, r)\)-arithmetic dcs, there exists an edge say \(v_1v_j \in E(K_n) \) such that \(|f^\oplus(v_1v_j)| = k \). Without loss of generality, assume that \(|f^\oplus(v_1v_2)| = k \) so that \(f(v_2) = \{x_1, x_2, \ldots, x_{t+k}\} \) or \(f(v_2) = \{x_1, x_2, \ldots, x_t, y_1, y_2, \ldots, y_k\} \).

Again, since \(f \) is a \((k, r)\)-arithmetic dcs, there exists an edge in \(K_n \) such that the cardinality of the symmetric difference of the subsets of \(X \) assigned to its end vertices is \(k + r \). For this, there are two possibilities viz., \(|f^\oplus(v_1v_t)| = k + r \) or \(|f^\oplus(v_2v_t)| = k + r \). Without loss of generality, assume \(v_t = v_3 \). Thus, we have either \(|f^\oplus(v_2v_3)| = k + r \) or \(|f^\oplus(v_1v_3)| = k + r \).

Suppose \(f(v_2) = \{x_1, x_2, \ldots, x_{t+k}\} \). If \(|f^\oplus(v_2v_3)| = k + r \), then we have following possible assignments for the vertex \(v_3 \).
(i) \(f(v_3) = \{x_1, x_2, \ldots, x_{t+k}, y_1, y_2, \ldots, y_{k+r}\} \) or

(ii) \(f(v_3) = \{x_1, x_2, \ldots, x_t, y_1, y_2, \ldots, y_r\} \) or

(iii) \(f(v_3) = \{y_1, y_2, \ldots, y_{r-t}\} \)

or (iv) \(f(v_3) = \{x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_{k+r-t}\} \)

(i) implies \(|f^\oplus(v_1v_3)| = 2k + r; \)

(ii) implies \(|f^\oplus(v_1v_3)| = t + r, \) which is not possible.

(iii) implies \(|f^\oplus(v_1v_3)| = t + r - t = r, \) which is not possible.

(iv) implies \(|f^\oplus(v_1v_3)| = 2k + r. \)

Therefore, the only possibility of getting \(|f^\oplus(v_1v_3)| = k + 2r \) occurs when \(k + 2r = 2k + r, \) which implies \(k = r. \)

The proof of the case when \(|f^\oplus(v_1v_3)| = k + r \) follows in a similar way.

Next, suppose \(f(v_2) = \{x_1, x_2, \ldots, x_t, y_1, y_2, \ldots, y_k\}. \) We should then have either \(|f^\oplus(v_2v_3)| = k + r \) or \(|f^\oplus(v_1v_3)| = k + r. \) Assume \(|f^\oplus(v_2v_3)| = k + r \) whence we have the following possibilities.

(i) \(f(v_3) = \{x_1, x_2, \ldots, x_t, y_1, y_2, \ldots, y_{k}, z_1, z_2, \ldots, z_{k+r}\} \) or

(ii) \(f(v_3) = \{x_1, x_2, \ldots, x_t, z_1, z_2, \ldots, z_r\} \) or

(iii) \(f(v_3) = \{y_1, y_2, \ldots, y_{k}, z_1, z_2, \ldots, z_{k+r-t}\} \) or

(iv) \(f(v_3) = \{z_1, z_2, \ldots, z_{r-t}\} \)

(i) implies \(|f^\oplus(v_1v_3)| = 2k + r; \)

(ii) implies \(|f^\oplus(v_1v_3)| = r, \) which is not possible.
(iii) implies $|f^\oplus(v_1v_3)| = 2k + r$, which is not possible.

(iv) implies $|f^\oplus(v_1v_3)| = r$.

Therefore, the only possibility of getting $|f^\oplus(v_1v_3)| = k + 2r$ occurs when $k + 2r = 2k + r$, which implies $k = r$.

Hence, if $K_n, n \geq 3$ is (k, r)-arithmetic dcsl, then $k = r$.

PART 2: In this part, we prove that if K_n is (r, r)-arithmetic dcsl, then $n \leq 4$. If possible, suppose $n > 4$ and K_n is (r, r)-arithmetic dcsl with an (r, r)-arithmetic dcsl f. Hence, the constants of proportionality with respect to f can be arranged in the arithmetic progression, $r, 2r, 3r, 4r, 5r, 6r, 7r, 8r, 9r, 10r, \ldots$. Without loss of generality, assume $f(v_1) = X_1 = \{x_1, x_2, \ldots, x_k\}$. Then, to have the constant of proportionality r on one of the edges of K_5 we have the following selection of the set X_2, say at the vertex v_2;

1. $f(v_2) = X_2 = \{x_1, x_2, \ldots, x_k, x_{k+1}, \ldots, x_{2k+r}\}$ or
2. $f(v_2) = X_2 = \{x_1, x_2, \ldots, x_k\} \cup \{y_1, y_2, \ldots, y_{k+r}\}$.

Now, in order to get the constant of proportionally $2r$ on one of the other edges of K_n, we have the following assignment of subsets of the ground set X to the vertices say at v_3.

1. $f(v_3) = X_3 = \{x_1, x_2, \ldots, x_k, x_{k+1}, \ldots, x_{k+2r}\}$;
2. $f(v_3) = X_3 = \{x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_{2r}\}$;
Consider (1.a1): Then,
\[|f(v_1) \oplus f(v_2)| = r; \]
\[|f(v_1) \oplus f(v_3)| = 2r \text{ and } |f(v_2) \oplus f(v_3)| = r, \]
a contradiction to the assumption that \(f \) is \((r, r)\)-dclsl. Hence, the labeling (1.a1) is not admissible.

Consider (1.a2) Then,
\[|f(v_1) \oplus f(v_2)| = r; \]
\[|f(v_1) \oplus f(v_3)| = 2r \text{ and } |f(v_2) \oplus f(v_3)| = 3r, \]
which are admissible.

Consider (1.a3) Then,
\[|f(v_1) \oplus f(v_2)| = r; \]
\[|f(v_1) \oplus f(v_3)| = 2r \text{ and } |f(v_2) \oplus f(v_3)| = r, \]
a contradiction to the assumption that \(f \) is \((r, r)\)-dclsl. Therefore, the labeling (1.a3) is not admissible.

Hence, until at this stage, we have the admissible assignment of subsets of \(X \) as follows:
\[f(v_1) = X_1 = \{x_1, x_2, \ldots, x_k\} \]
\[f(v_2) = X_2 = \{x_1, x_2, \ldots, x_k, x_{k+1}, \ldots, x_{2k+r}\} \]
\[f(v_3) = X_3 = \{x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_{2r}\} \]

By symmetry, the possibility of the assignment (2), \(f(v_2) = X_2 = \{x_1, x_2, \ldots, x_k\} \cup \{y_1, y_2, \ldots, y_{k+r}\} \), reduces to the same choice namely,
Chapter 2

\[f(v_3) = X_3 = \{x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_{2r}\}. \]

Hence, without loss of generality, assume
\[f(v_3) = X_3 = \{x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_{2r}\}. \]

Now, to have the constant of proportionality 4r on pairs of vertices involving \(v_1, v_2, v_3 \) we have the following three possible selections.

II.a. \(f(v_4) = X_4 = \{x_1, x_2, \ldots, x_{k+4}, y_1, y_2, \ldots, y_{2r}\} \) or

II.b. \(f(v_4) = X_4 = \{x_1, x_2, \ldots, x_{k+r}, y_1, y_2, \ldots, y_{3r}\} \) or

II.c. \(f(v_4) = X_4 = \{x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_{2r}, t_1, t_2, \ldots, t_{2r}\} \).

Consider (II.a): In this case, we get
\[
|f(v_1) \oplus f(v_2)| = r; \\
|f(v_1) \oplus f(v_3)| = 2r; \\
|f(v_2) \oplus f(v_3)| = 3r; \\
|f(v_1) \oplus f(v_4)| = 4r; \\
|f(v_2) \oplus f(v_4)| = 3r, \] a contradiction to our assumption that \(f \) is \((r, r)\)-dcsl. Hence, the labeling (1.a1) is not admissible.

Consider (II.b): In this case,
\[
|f(v_1) \oplus f(v_2)| = r; \\
|f(v_1) \oplus f(v_3)| = 2r; \\
|f(v_2) \oplus f(v_3)| = 3r; \\
|f(v_1) \oplus f(v_4)| = 4r; \\
|f(v_2) \oplus f(v_4)| = 3r, \] a contradiction to the assumption that \(f \) is \((r, r)\)-dcsl. Hence, the labeling (1.a1) is not admissible.

Consider (II.c): In this case,
\[
|f(v_1) \oplus f(v_2)| = r; \\
|f(v_1) \oplus f(v_3)| = 2r; \\
|f(v_2) \oplus f(v_3)| = 3r; \\
|f(v_1) \oplus f(v_4)| = 4r; \\
|f(v_2) \oplus f(v_4)| = 3r; \]
\[|f(v_2) \oplus f(v_4)| = 5r \text{ and } |f(v_3) \oplus f(v_4)| = 6r, \text{ whence (1.a1) is admissible.} \]

Hence, until at this stage of completing the assignment of the vertices \(v_1, v_2, v_3, v_4 \), we have the admissible assignments as follows:

\[
\begin{align*}
 f(v_1) &= X_1 = \{x_1, x_2, \ldots, x_k\} \\
 f(v_2) &= X_2 = \{x_1, x_2, \ldots, x_k, x_{k+1}, \ldots, x_{2k+r}\} \\
 f(v_3) &= X_3 = \{x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_{2r}\}. \\
 f(v_4) &= X_4 = \{x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_{2r}, t_1, t_2, \ldots, t_{2r}\}.
\end{align*}
\]

Now, to have the constant of proportionality \(7r \) on pairs with the vertices \(v_1, v_2, v_3, v_4 \) we have the following four selections.

II.a. With the vertex \(v_1 \), \(f(v_5) = X_5 = \{x_1, x_2, \ldots, x_{k+7r}\} \) or

II.b. With the vertex \(v_2 \):

II.b1. \(f(v_5) = X_5 = \{x_1, x_2, \ldots, x_k, x_{k+8r}, \ldots, y_1, y_2, \ldots, y_{3r}\} \)

or

II.b2. \(f(v_5) = X_5 = \{x_1, x_2, \ldots, x_k, x_{k+r}, \ldots, y_1, y_2, \ldots, y_{6r}\} \)

II.c. With \(v_3 \): **II.c1.** \(f(v_5) = X_5 = \{x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_{9r}\} \)

or

II.c2. \(f(v_5) = X_5 = \{x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_{2r}, h_1, h_2, \ldots, h_{7r}\} \)

II.d. With \(v_4 \):

II.d1. \(f(v_5) = X_5 = \{x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_{2r}, t_1, t_2, \ldots, t_{9r}\} \).
or

II.d2. \(f(v_5) = X_5 = \{x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_{2r}, t_1, t_2, \ldots, t_{2r}, z_1, z_2, \ldots, z_{7r}\} \)

Consider II.a. Then, we get

\[
|f(v_1) \oplus f(v_2)| = r; \\
|f(v_1) \oplus f(v_3)| = 2r; \quad |f(v_2) \oplus f(v_3)| = 3r; \quad |f(v_1) \oplus f(v_4)| = 4r; \\
|f(v_2) \oplus f(v_4)| = 5r; \quad |f(v_3) \oplus f(v_4)| = 6r; \quad |f(v_2) \oplus f(v_4)| = 6r = |f(v_3) \oplus f(v_4)|, \]a contradiction to the assumption that \(f \) is \((r, r)\)-dcsl.
Hence, the labeling (II.a) is not admissible.

Consider II.b1. Then, we get

\[
|f(v_1) \oplus f(v_2)| = r; \\
|f(v_1) \oplus f(v_3)| = 2r; \quad |f(v_2) \oplus f(v_3)| = 3r; \quad |f(v_1) \oplus f(v_4)| = 4r; \\
|f(v_2) \oplus f(v_4)| = 5r; \quad |f(v_3) \oplus f(v_4)| = 6r; \quad |f(v_1) \oplus f(v_5)| = 8r; \\
|f(v_2) \oplus f(v_5)| = 7r; \quad |f(v_3) \oplus f(v_5)| = 10r; \quad |f(v_4) \oplus f(v_5)| = 12r, \]a contradiction to the assumption that \(f \) is \((r, r)\)-dcsl. Hence, the labeling (II.b1) is not admissible.

Consider II.b2. Then, we get

\[
|f(v_1) \oplus f(v_2)| = r; \\
|f(v_1) \oplus f(v_3)| = 2r; \quad |f(v_2) \oplus f(v_3)| = 3r; \quad |f(v_1) \oplus f(v_4)| = 4r; \\
|f(v_2) \oplus f(v_4)| = 5r; \quad |f(v_3) \oplus f(v_4)| = 6r; \quad |f(v_2) \oplus f(v_5)| = 6r = \]
\[|f(v_3) \oplus f(v_4)|,\] a contradiction to the assumption that \(f\) is \((r, r)\)-dcsl.

Hence, the labeling (II.b2) is not admissible.

Consider II.c1. Then, we get

\[|f(v_1) \oplus f(v_2)| = r;\]
\[|f(v_1) \oplus f(v_3)| = 2r; \quad |f(v_2) \oplus f(v_3)| = 3r; \quad |f(v_1) \oplus f(v_4)| = 4r;\]
\[|f(v_2) \oplus f(v_4)| = 5r; \quad |f(v_3) \oplus f(v_4)| = 6r; \quad |f(v_1) \oplus f(v_5)| = 11r,\] which is greater than \(10r\), the maximum constant of proportionality and hence a contradiction to the assumption that \(f\) is \((r, r)\)-dcsl. Hence, the labeling (II.c1) is not admissible.

Consider II.c2. Then, we get

\[|f(v_1) \oplus f(v_2)| = r;\]
\[|f(v_1) \oplus f(v_3)| = 2r; \quad |f(v_2) \oplus f(v_3)| = 3r; \quad |f(v_1) \oplus f(v_4)| = 4r;\]
\[|f(v_2) \oplus f(v_4)| = 5r; \quad |f(v_3) \oplus f(v_4)| = 6r; \quad |f(v_1) \oplus f(v_5)| = 9r;\]
\[|f(v_2) \oplus f(v_5)| = 10r; \quad |f(v_3) \oplus f(v_5)| = 7r; \quad |f(v_4) \oplus f(v_5)| = 9r = |f(v_1) \oplus f(v_5)|,\] a contradiction to the assumption that \(f\) is \((r, r)\)-dcsl.

Hence, the labeling (II.c2) is not admissible.

Hence, all the possible choices of assignment of the subsets of \(X\) to the vertices fail to define \(f\) as an \((r, r)\)-dcsl. Hence, for \(n \geq 5\), there exists no \((r, r)\)-dcsl for \(K_n\).
Sufficiency: Let \(n \leq 4 \) and \(k = r \). We then display an \((r, r)\)-arithmetic dcsl for \(K_n \) for each \(n \).

For \(n = 1, 2 \), assign \(f(v_1) = \emptyset \), and \(f(v_1) = \emptyset \), \(f(v_2) = \{x_1, x_2, \ldots, x_r\} \) respectively. In each case, it is easy to see that \(f \) so defined is indeed an \((r, r)\)-arithmetic dcsl of \(K_n \).

Next, let \(V(K_3) = \{v_1, v_2, v_3\} \) and let \(f : V(K_3) \to 2^X \) be defined by \(f(v_1) = X_1 = \{x_1, x_2, \ldots, x_r\} \); \(f(v_2) = X_2 = \{x_1, x_2, \ldots, x_r\} \cup \{y_1, y_2, \ldots, y_{2r}\} \), \(x_i \neq y_i \); \(f(v_3) = X_3 = \{x_1, x_2, \ldots, x_r, x_{r+1}, \ldots, x_{2r}\} \).

Then, since \(K_3 \) is complete, \(d(v_i, v_j) = 1 \) for all distinct \(i, j \in \{1, 2, 3\} \).

Also, \(|f(v_1) \oplus f(v_2)| = r; |f(v_1) \oplus f(v_3)| = 2r \) and \(|f(v_2) \oplus f(v_3)| = 3r \).

Thus, \(K_3 \) is an \((r, r)\)-arithmetic dcsl-graph.

Let \(V(K_4) = \{v_1, v_2, v_3, v_4\} \). Define \(f : V(K_4) \to 2^X \) so that \(f(v_1) = X_1 = \{x_1, x_2, \ldots, x_r\} \); \(f(v_2) = X_2 = \{x_1, x_2, \ldots, x_r\} \cup \{y_1, y_2, \ldots, y_{2r}\} \), \(x_i \neq y_i \); \(f(v_3) = X_3 = \{x_1, x_2, \ldots, x_r, x_{r+1}, \ldots, x_{2r}\} \) and \(f(v_4) = X_4 = \{x_1, x_2, \ldots, x_r, y_1, y_2, \ldots, y_{2r}, t_1, t_2, \ldots, t_{2r}\} \). Since \(K_4 \) is complete, \(d(v_i, v_j) = 1 \) for all distinct \(i, j \in \{1, 2, 3, 4\} \). Then,

\[
|f(v_1) \oplus f(v_2)| = r; |f(v_1) \oplus f(v_3)| = 2r; |f(v_1) \oplus f(v_4)| = 4r; \\
|f(v_2) \oplus f(v_3)| = 3r; |f(v_2) \oplus f(v_4)| = 5r \text{ and } |f(v_3) \oplus f(v_4)| = 6r.
\]

Hence, \(K_f(K_4) = \{r, 2r, 3r, 4r, 5r, 6r\} \) and the proof is complete.
2.5 1-uniform distance compatible set-labeled graphs

As defined already, a dcsl f of a graph $G = (V, E)$ is k-uniform if all the constants of proportionality with respect to f are equal to k, and if G admits such a dcsl then G is a k-uniform dcsl-graph. In this section, we study particularly on classes of graphs which admit a 1-uniform dcsl.

We start with the following proposition.

Proposition 2.5.1. If (G, f) is any 1-uniform dcsl-graph then, no two adjacent vertices in G receive subsets of the same cardinality.

Proof. Suppose G has two adjacent vertices u and v with $|f(u)| = |f(v)|$.

Case 1: $f(u) \cap f(v) = \emptyset$

\[|f(u) \oplus f(v)| = |f(u) \cup f(v)| = |f(u) \cup f(v)| \geq 2,\text{ whereas } d(u, v) = 1, \text{ a contradiction.}

Case 2: $f(u) \cap f(v) \neq \emptyset$.

\[|f(u)| = |f(v)| \text{ and } f \text{ is injective implies } |f^{\oplus}(uv)| = |f(u) \oplus f(v)| = |f(u) - f(v)| + |f(v) - f(u)| \geq 2.\text{ Which is again a contradiction, since } d(u, v) = 1. \text{ Hence no two adjacent vertices in a 1-uniform dcsl-graph } G \text{ receive subsets of the same cardinality.} \]

Theorem 2.5.2. The complete graph K_n admits a 1-uniform dcsl if and only if $n \in \{1, 2\}$.
Chapter 2

58

Figure 2.7: A 1-uniform dcs of K_1 and K_2

Proof. A 1-uniform dcs each of K_1 and K_2 are given in Figure 2.7. Conversely, let $n \geq 3$ and suppose K_n admits a 1-uniform dcs say, f with the dcs-set X. Let the vertices v_i, be labeled by subsets X_i of X. We first claim that none of these subsets X_i can be empty. For, suppose $X_i = \emptyset$ for some i, say for $i = 1$. Then, by definition, $|X_1 \oplus X_2| = |X_2| = 1$. Similarly, $|X_1 \oplus X_3| = |X_3| = 1$. By injectivity of f, we then get $|X_2 \oplus X_3| = 2$, whereas $d(v_2, v_3) = 1$. This implies that, the constant of proportionality $k^f_{(v_2, v_3)} = 2 > 1$, which is a contradiction. Thus, $|X_i| \geq 1$, for each i, $1 \leq i \leq n$. Again, by hypothesis, $|X_1 \oplus X_2| = 1$, $|X_1 \oplus X_3| = 1$ and $|X_2 \oplus X_3| = 1$. Since, $X_i \oplus X_j = (X_i - X_j) \cup (X_j - X_i)$, $|X_1 \oplus X_2| = 1 \Rightarrow$ either $|X_1 - X_2| = 1$ or $|X_2 - X_1| = 1$. Without loss of generality, let $|X_1 - X_2| = 1$. Then $X_2 - X_1 = \emptyset \Rightarrow X_1 = X_2$ or $X_2 \subset X_1$. The
first possibility contradicts the injectivity of f. Therefore, $X_2 \subset X_1$.

Thus, we can find an element k_1 in X such that

$$X_1 = X_2 \cup \{k_1\} \ldots \ldots \text{(i)}.$$

Similarly, $|X_2 \oplus X_3| = 1 \Rightarrow X_2 \subset X_3$ or $X_3 \subset X_2$. If $X_2 \subset X_3$, then, there exists $k_2 \in X$ ($k_1 \neq k_2$) such that,

$$X_3 = X_2 \cup \{k_2\} \ldots \ldots \text{(ii)}.$$

If $X_3 \subset X_2$, then there exists $k_3 \in X$ such that

$$X_2 = X_3 \cup \{k_3\} \ldots \ldots \text{(iii)}.$$

From (i) and (ii) we get, $|X_1 \oplus X_3| = |\{k_1, k_2\}| = 2$, a contradiction, since $|X_1 \oplus X_3| = 1$. Also from (i) and (iii), we get $X_1 = X_3 \cup \{k_1, k_3\}$. So that, $|X_1 \oplus X_3| = |\{k_1, k_3\}| = 2$, again a contradiction. Thus, there cannot exists a 1-uniform dcsl, f and subsets X_1, X_2 and X_3 such that $|X_1 \oplus X_2| = 1$, $|X_1 \oplus X_3| = 1$ and $|X_2 \oplus X_3| = 1$. This completes the proof. \hfill \square

Thus, the following interesting result is suggested by the proof of the Theorem \ref{thm:triangle-free}.

Proposition 2.5.3. If G is a graph that admits a 1-uniform dcsl then G is triangle-free.

Proof. Suppose G has a triangle, with vertices v_1, v_2 and v_3, and G
has a 1-uniform dcsl \(f \). Two cases arise, viz.,

(i) one of the vertices receives the empty set as its \(f \)-value and
(ii) none of the vertices of the triangle receives \(\emptyset \) as its \(f \)-value.

A contradiction can be derived in each case as in the proof of Theorem 2.5.2, establishing the result by contraposition.

\[\square \]

Corollary 2.5.4. For any graph \(G \) of order at least six, at most one of \(G \) and its complement \(\overline{G} \) can admit a 1-uniform dcsl.

Proof. This follows from Theorem 2.5.2 and the well known Theorem of Ramsey that ‘for every graph \(G \) of order at least six, either \(G \) or \(\overline{G} \) contains a triangle’ (see, [11]).

\[\square \]

Remark 2.5.1. If \(G \) is a maximal outerplanar graph, then its central subgraph \(\langle C(G) \rangle \) is isomorphic to one of the seven graphs given in Figure 2.8 (see, [11]). By Proposition 2.5.3, the only maximal outerplanar graphs that admit a 1-uniform dcsl are \(K_1 \) and \(K_2 \).

Proposition 2.5.5. Any 1-uniform dcsl-graph \(G \) of order at least 3 has at most one vertex of full degree.

Proof. Let \(G \) be a 1-uniform dcsl-graph of order \(n \), where \(n \geq 3 \). Suppose, if possible, \(G \) has two vertices say, \(u \) and \(v \), of full degree.
That is, \(d(u) = n - 1 = d(v) \). Then, both \(u \) and \(v \) are adjacent to a vertex \(w \) of \(G \) and these three vertices \(u, v \) and \(w \) form a triangle in \(G \), which is not possible due to Proposition 2.5.3. Hence, \(G \) can have at most one vertex of full degree.

\[
\text{Proposition 2.5.6. } \text{In a 1-uniform dcsl-graph } G \text{ of order at least 3, one vertex is of full degree then all other vertices are pendant.}
\]

\[
\text{Proof. Suppose } G \text{ is a 1-uniform dcsl-graph with } n \text{ vertices and } v_1 \text{ be the vertex such that } d(v_1) = n - 1. \text{ That is, } v_1 \text{ is adjacent to all other vertices of } G. \text{ Now, if any two other vertices say } u \text{ and } w \text{ of } G \text{ are adjacent, then } u, w, v_1 \text{ form a triangle. Hence by Proposition 2.5.3, the result follows by contraposition.}
\]
2.5.1 Classes of 1-uniform dcsI-graphs

Here we discuss the existence of 1-uniform dcsI for different classes of graphs. We begin with path P_n.

Theorem 2.5.7. All paths are 1-uniform dcsI-graphs.

Proof. Consider P_n, the path with n vertices. Let v_1, v_2, \ldots, v_n be the vertices of P_n. Define $f : V(P_n) \rightarrow \{1, 2, 3, \ldots, n\}$ defined by $f(v_i) = \{1, 2, 3, \ldots, i\}$, $1 \leq i \leq n$; so that, $f^{\oplus}(v_i v_k) = f(v_i) \oplus f(v_k) = \{1, 2, 3, \ldots, i\} \oplus \{1, 2, 3, \ldots, k\}$, $i \leq k$

$= \{i + 1, i + 2, i + 3, \ldots, k\}$.

Thus,

$| f^{\oplus}(v_i v_k) | = k - i = d(v_i, v_k), 1 \leq i < k \leq n. \quad \Box$

Remark 2.5.2. However, 1-uniform dcsI of P_n given in the proof of Theorem 2.5.7 is not unique. Figure 2.9 displays a 1-uniform dcsI of P_5 with $| X | = 4$. Theorem 2.5.7 gives a 1-uniform dcsI of P_n with the cardinality of the underlying set X being equal to n. Hence to find the minimum cardinality of the underlying set X with respect to which P_n admits a 1-uniform dcsI is an interesting problem to be investigated.
Theorem 2.5.8. All finite stars are 1-uniform dcsl-graphs.

Proof. Let $v_1, v_2, v_3, \ldots, v_n$ be the vertices of $K_{1,n}$ with v_1 as its center. Define $f : V(K_{1,n}) \rightarrow 2^X$ defined by

\[f(v_1) = \{1\}, \quad f(v_i) = \{1, i\}, \quad 2 \leq i \leq n + 1. \]

Then, $f^\oplus(v_1v_j) = f(v_1) \oplus f(v_j) = \{1\} \oplus \{1, j\} = \{j\}.$

Thus $|f^\oplus(v_1v_j)| = 1 = d(v_1, v_j).$ Also, $f^\oplus(v_i v_j) = f(v_i) \oplus f(v_j) = \{1, i\} \oplus \{1, j\} = \{i, j\},$

and hence, $|f^\oplus(v_i v_j)| = 2 = d(v_i v_j).$ Thus, f is a 1-uniform dcsl. \qed

A dcsl of $K_{1,9}$ is shown in Figure 2.10.

Combining Proposition 2.5.6 and Theorem 2.5.8 we have the following theorem.

Theorem 2.5.9. A graph G with a vertex of full degree is 1-uniform dcsl if and only if $G \cong K_{1,n}.$

Theorem 2.5.10. Every even cycle is 1-uniform dcsl-graph.
Chapter 2

Figure 2.10: A dcl of $K_{1,9}$

Proof. Consider C_n, $n \geq 4$ even. Let $V(C_n) = \{v_1, v_2, v_3, \ldots, v_n\}$ and let $X = \{1, 2, 3, \ldots, k\}$ where $k = \frac{n}{2} + 1$.

Define $f : V(C_n) \rightarrow 2^X$ defined by,

$f(v_1) = X,$

$f(v_{i+1}) = f(v_i) - \{i + 2\}, \quad 1 \leq i \leq \frac{n}{2},$

$f(v_k) = \{1, 2, 3\},$

$f(v_{k+j}) = f(v_{k+j-1}) \cup \{j + 3\}, \quad 1 \leq j \leq \frac{n-4}{2}$. It can be easily verified that the set-valuation f is a 1-uniform dcl.

The 1-uniform dcl given in Theorem 2.5.10 is not unique. Figure 2.11 gives a 1-uniform dcl of C_6 with a dcl set X of cardinality four.

Theorem 2.5.11. Cycles C_n with $n \geq 3$ and n odd are not 1-uniform dcl-graphs.
Chapter 2

65

Figure 2.11: 1-uniform dcsl of C_6

Proof. Let C_n be a cycle with $n \geq 3$ and n odd. Let (v_1, v_2, \ldots, v_n) be the vertices of C_n read in that order around the cycle. If possible, suppose that f is a 1-uniform dcsl of C_n and, without loss of generality, X_1, X_2, \ldots, X_n be the distinct subsets of X assigned by f to the vertices v_1, v_2, \ldots, v_n of C_n respectively. That is, $f(v_i) = X_i$, $1 \leq i \leq n$.

Claim $X_i \neq \emptyset$ for any i, $1 \leq i \leq n$.

Suppose $X_i = \emptyset$ for some i, say for $i = 1$. Then,

$$1 = |X_2| = |X_n|, 2 = |X_3| = |X_{n-1}|, \ldots, \left\lfloor \frac{n}{2} \right\rfloor |X_{\left\lfloor \frac{n}{2} \right\rfloor}| = |X_{\left\lfloor \frac{n}{2} \right\rfloor + 1}| = \left\lceil \frac{n}{2} \right\rceil.$$ Therefore $|f^\oplus(v_{\left\lfloor \frac{n}{2} \right\rfloor}, v_{\left\lfloor \frac{n}{2} \right\rfloor + 1})| \geq 2$. But, $d(v_{\left\lfloor \frac{n}{2} \right\rfloor}, v_{\left\lfloor \frac{n}{2} \right\rfloor + 1}) = 1$, which is a contradiction. Therefore, it follows that $|X_i| \geq 1$, for every i, $1 \leq i \leq n$.

Let $|X_1| = |f(v_1)| = m$. Now, $1 = |X_1 \oplus X_2| = |X_1 - X_2| + |X_2 - X_1|$;
⇒ either $|X_1 - X_2| = 1$ and $|X_2 - X_1| = 0$;
or $|X_2 - X_1| = 1$ and $|X_1 - X_2| = 0$;
Suppose, $|X_1 - X_2| = 1$ and $|X_2 - X_1| = 0$. Then, $X_2 \subseteq X_1$. On the
other hand, if $|X_1 - X_2| = 0$ and $|X_2 - X_1| = 1$, then $X_1 \subseteq X_2$.
Similarly, for each i, $2 \leq i \leq n$, we can show that, either $X_i \subseteq X_{i+1}$ or
$X_{i+1} \subseteq X_n$, where the indices are reduced modulo n.
Considering the different possible cardinalities of the sets X_i, $2 \leq i \leq n$
we have the following.

\[
|X_2| = |X_n| = \begin{cases}
m + 1 \\
\text{or} \\
m - 1
\end{cases}
\]
\[
|X_3| = |X_{n-1}| = \begin{cases}
m + 2 \\
m \\
m - 2
\end{cases}
\]
\[
|X_4| = |X_{n-2}| = \begin{cases}
m + 3 \\
m + 1 \\
m - 1 \\
m - 3
\end{cases}
\]
\[|X_{\lfloor \frac{n}{2} \rfloor}| = |X_{\lfloor \frac{n}{2} \rfloor+1}| = \begin{cases}
 m + \lfloor \frac{n}{2} \rfloor - 1 \\
 m + \lfloor \frac{n}{2} \rfloor - 3 \\
 m + \lfloor \frac{n}{2} \rfloor - 5 \\
 \quad \ldots \\
 m + 2 \\
 m \\
 m - 2 \\
 \quad \ldots \\
 m - \lfloor \frac{n}{2} \rfloor - 5 \\
 m - \lfloor \frac{n}{2} \rfloor - 3 \\
 m - \lfloor \frac{n}{2} \rfloor - 1
\end{cases} \]

if \(\lfloor \frac{n}{2} \rfloor \) is odd
and

\[
\begin{align*}
|X_{\lfloor \frac{n}{2} \rfloor}| &= |X_{\lfloor \frac{n}{2} \rfloor + 1}| = \\
&= \begin{cases}
 m + \lfloor \frac{n}{2} \rfloor - 1 \\
 m + \lfloor \frac{n}{2} \rfloor - 3 \\
 m + \lfloor \frac{n}{2} \rfloor - 5 \\
 \vdots \\
 m - \lfloor \frac{n}{2} \rfloor - 5 \\
 m - \lfloor \frac{n}{2} \rfloor - 3 \\
 m - \lfloor \frac{n}{2} \rfloor - 1
\end{cases}
\end{align*}
\]

if \(\lfloor \frac{n}{2} \rfloor \) is even.

There are \(\lfloor \frac{n}{2} \rfloor \) different possibilities for the cardinality of \(|X_{\lfloor \frac{n}{2} \rfloor}| \) and \(|X_{\lfloor \frac{n}{2} \rfloor + 1}| \). Considering the \(\lfloor \frac{n}{2} \rfloor^2 \) combinations of these possibilities, we can see that \(|X_{\lfloor \frac{n}{2} \rfloor}| \oplus |X_{\lfloor \frac{n}{2} \rfloor + 1}| \geq 2 \). But, \(d(v_{\lfloor \frac{n}{2} \rfloor}, v_{\lfloor \frac{n}{2} \rfloor + 1}) = 1 \), again a contradiction. Hence the theorem seems to be proved, by method of
contradiction.

In view of Theorem 2.5.10 and Theorem 2.5.11 we have the characterization of 1-uniform dcsl-cycles.

Theorem 2.5.12. Cycle C_n, $(n \geq 3)$ is 1-uniform dcsl if and only if n is even.

The following result asserts more than what Theorem 2.5.11 reflects.

Theorem 2.5.13. If a graph G has an odd cycle as an induced subgraph then G does not admit a 1-uniform dcsl.

Proof. First we will prove that any graph contains C_3 or C_5 as an induced subgraph, does not admit a 1-uniform dcsl. Suppose G is a graph on m vertices which contains an odd cycle C_3 as an induced subgraph and G admits a 1-uniform dcsl f, with the ground set X. Let X_1, X_2 and X_3 are the subsets of X which are assigned to the vertices of C_3 under the 1-uniform dcsl f. Then, the given 1-uniform dcsl f induces a 1-uniform dcsl on C_3. But this is not possible by Proposition 2.5.3. Again, if it contains C_5 as an induced subgraph and if there exist a chord of length two between any pair of vertices in C_5, then we get a C_3 as an induced subgraph and by previous argument G cannot have a 1-uniform dcsl. Thus, any graph contains C_5 as an induced subgraph
Chapter 2

is not 1-uniform dcsl-graph. Now consider C_7. Radius of C_7 is three. Existence of a 2-chord gives rise to a C_5 and hence do not admit a 1-uniform dcsl. Chord of length three makes no difference between the lengths of different pairs of vertices in C_7 and it is not 1-uniform dcsl-graph by Theorem 2.5.11. Thus, any graph contains C_7 as an induced subgraph is not a 1-uniform dcsl-graph.

In general, if C_{2n+1} is an odd cycle with radius $\lfloor \frac{2n+1}{2} \rfloor$, then existence of any of the p-chords ($2 \leq p \leq \lfloor \frac{2n+1}{2} \rfloor - 1$) makes an induced odd cycle of length less than $2n + 1$ in the graph G. By induction, it follows that if a graph G has an odd cycle as an induced subgraph, then G does not admit a 1-uniform dcsl.

We already proved that even cycles are dcsl-graphs. It is interesting to check whether a cycle with chords is dcsl-graph. Also Theorem 2.5.13 states that no odd cycle with chords can admit a dcsl. Thus, we have the following characterization of dcsl cycle with chords.

Theorem 2.5.14. The n cycle C_n with chords is dcsl-graph if and only if n is even and the maximum number of chords is $\frac{n}{2} - 2$

Proof. Let G be a cycle of length n where n is odd with $\frac{n}{2} - 2$ chords. Since odd cycles are forbidden for dcsl-graphs, G is not a dcsl-graph.
Conversely, let C_n be an n cycle. Let v_1, v_2, \ldots, v_n are the vertices of C_n. Join the non-adjacent vertices v_i and v_j in C_n when $d(v_i, v_j)$ is odd. At each step we get a dcsl-graph. There are maximum $\frac{n}{2} - 2$ such chords. Finally we get the graph which is nothing but $P_2 \times P_{\frac{n}{2}}$ and invoking Theorem 2.5.26 $P_2 \times P_{\frac{n}{2}}$ is a dcsl-graph. □

Remark 2.5.3. Note that the dcsl-graph obtained in the above theorem is a maximal outerplanar graph. Thus maximum number of chords that can be added to an even cycle C_n such that the resulting graph is maximal outerplanar dcsl-graph is $\frac{n}{2} - 2$.

Corollary 2.5.15. For $n > 4$, no graph C_n has a 1-uniform dcsl f such that $f(u) = \emptyset$ for some $u \in C_n$.

Proof. Let C_n be any cycle on n vertices v_1, v_2, \ldots, v_n, $n > 4$. Suppose C_n has a 1-uniform dcsl f such that $f(v_1) = \emptyset$

Case 1: n is even.

If n is even, then $f(v_1) \subset f(v_2) \subset f(v_3) \subset \cdots \subset f(v_{\frac{n}{2}})$ with $|f(v_i)| = i - 1, 1 \leq i \leq \frac{n}{2}$ and $f(v_1) \subset f(v_{\frac{n}{2}}) \subset f(v_{n-1}) \subset \cdots \subset f(v_{n+1})$ with $|f(v_{n-j})| = |f(v_{n-j+1})| + 1, 1 \leq j \leq \frac{n}{2} + 1$. Thus, $|f(v_{\frac{n}{2}})| = |f(v_{\frac{n}{2}+1})|$ and, $|f^\oplus(v_{\frac{n}{2}}, v_{\frac{n}{2}+1})| \geq 2$, which is a contradiction, since $v_{\frac{n}{2}}$ is adjacent to $v_{\frac{n}{2}+1}$.

Case 2: n is odd.

If n is odd, then by Theorem 2.5.11 $f(u) \neq \emptyset$, for any $u \in C_n$. Hence, for $n > 4$, no graph C_n has a 1-uniform dcsl f such that $f(u) = \emptyset$, for some $u \in C_n$.

Theorem 2.5.16. Complete bipartite graph $K_{m,n}$ is 1-uniform dcsl if and only if it is isomorphic to $K_{1,n}$ or $K_{2,2}$.

Proof. Due to Theorem 2.5.8, $K_{1,n}$ is 1-uniform dcsl. Since $K_{2,2} \cong C_4$, by Theorem 2.5.10, $K_{2,2}$ is also 1-uniform dcsl.

Now, suppose if possible, there exists a 1-uniform dcsl, f of $K_{m,n}$, where $m, n \geq 3$. Let X be the dcsl-set satisfying, $X \geq d(K_{m,n})$ and $|2^X| \geq mn$. Let $V_1 = \{u_1, u_2, u_3, \ldots, u_m\}$ and $V_2 = \{v_1, v_2, v_3, \ldots, v_n\}$ be the bipartition of vertex set of $K_{m,n}$. Now, since f is a 1-uniform dcsl, $|f(u_i) \oplus f(v_j)| = 1$, $|f(u_i) \oplus f(u_j)| = 2$ and $|f(v_i) \oplus f(v_j)| = 2$, $1 \leq i \leq m$, $1 \leq j \leq n$.

Case 1: $|f(u_1)| = |f(u_2)| = |f(u_3)| = m$. Then, $|f(v_1)| = m+1$ or $m-1$.

Subcase (i): If $|f(v_1)| = m+1$, then, $f(v_1)$ must be the union of $f(u_1), f(u_2)$ and $f(u_3)$, Since f is a 1-uniform dcsl. Now, since $f(v_1)$ must be the union of $f(u_1), f(u_2)$ and $f(u_3)$, by injectivity of f, we
get, either $|f(v_2)| \geq m + 2$, a contradiction or $|f(v_2)| = m - 1$

If $|f(v_2)| = m - 1$, then, $f(v_2) \subset f(u_1)$, $f(v_2) \subset f(u_2)$ and $f(v_2) \subset f(u_3)$. Thus, either $f(u_3) \subset f(u_1)$ or $f(u_3) \subset f(u_2)$, both contradict the injectivity of f, since $|f(u_1)| = |f(u_2)| = |f(u_3)|$.

Subcase (ii): If $|f(v_1)| = m - 1$, then, $f(v_1) \subset f(u_1)$, $f(v_1) \subset f(u_2)$ and $f(v_1) \subset f(u_3)$. Thus, either $f(u_3) \subset f(u_1)$ or $f(u_3) \subset f(u_2)$, both contradict the injectivity of f, since $|f(u_1)| = |f(u_2)| = |f(u_3)|$.

Case 2: $|f(u_1)| = |f(u_2)| = m$ and $|f(u_3)| = m - 2$ or $m + 2$.

Subcase (i): If $|f(u_3)| = m - 2$, then $f(u_3) \subset f(u_1)$ and $f(u_3) \subset f(u_2)$. Hence $|f(v_1)| = |f(v_2)| = |f(v_3)| = m - 1$. But, $f(v_1) \subset f(u_1)$ and $f(v_1) \subset f(u_2)$; $f(v_2) \subset f(u_1)$ and $f(v_2) \subset f(u_2)$; and $f(v_1) \supset f(u_3)$. By the same argument as that of Case (i), we reach a contradiction to the injectivity of f.

Subcase (ii): If $|f(u_3)| = m + 2$ then, $|f(v_1)| = |f(v_2)| = |f(v_3)| = m + 1$, which is, again as in Case (i), a contradiction to the fact that f is injective. Hence, the proof is complete by method of contraposition. □

Remark 2.5.4. Because of Theorem 2.5.16, $K_{3,3}$ is not 1-uniform dcsl. Now, delete three independent edges of $K_{3,3}$ so that we get an
Figure 2.12: 1-uniform dcsl bipartite graph

even cycle which is 1-uniform dcsl. Hence, it is of interest to find the minimum number of edges, $\rho(m,n)$ to be deleted from a complete bipartite graph so that the resultant graph is 1-uniform dcsl. We have calculated the minimum number of edges to be deleted from $K_{3,3}$, $K_{3,4}$, $K_{4,4}$ and $K_{4,5}$ so as to obtain a 1-uniform dcsl-graph as 2, 4, 6, and 9 respectively. However, in general, the calculation of the minimum number $\rho(m,n)$ of edges to be deleted from a complete bipartite graph $K_{m,n}$ so that the resulting graph is a bipartite 1-uniform dcsl-graph is under further investigation.

Problem 5. Find out $\rho(m,n)$ for complete bipartite graph $K_{m,n}$.

Theorem 2.5.17. The n-dimensional cube Q_n admits a 1-uniform dcsl.
Proof. Consider the standard labeling of the vertices of Q_n with binary n-vectors, which has the property that there is an edge in Q_n if and only if the corresponding n-tuples of 0’s and 1’s differ in exactly one coordinate. As well known, this labeling has the property that the distance between any two vertices in Q_n is equal to the Hamming distance between the corresponding n-tuples of 0’s and 1’s which is defined as the number of coordinates in which they differ. If we consider the ground set X as consisting of the labels x_1, x_2, \ldots, x_n, then for any subset A of X we have $x_i \in A$ if and only if the i-th coordinate of the n-vector equals 1. With this 1–1 correspondence, it follows that the subsets of X are assigned to the vertices of Q_n in such way that their corresponding characteristic vectors satisfy the condition that there is an edge uv in Q_n if and only if the symmetric difference of A_i and A_j corresponding to u and v respectively, consists of exactly that number of elements, which is equal to the Hamming distance between the characteristic vectors corresponding to A_i and A_j. Thus, the labeling turns out to be equivalent to the 1-uniform dcsl of Q_n.

See Figure 2.13 for the cases $n = 1, 2$ and 3.

Theorem 2.5.18. The line graph $L(G)$ of a graph G of order ≥ 4
is 1-uniform dcs1-graph if and only if $G \cong C_{n(even)}$ or $G \cong P_n$.

Proof. As we already know, $L(C_n) = C_n$ and $L(P_n) = P_{n-1}$ and hence by Theorem 2.5.10 and by Theorem 2.5.7, $L(G)$ is 1-uniform dcs1 if $G \cong C_{n(even)}$ or $G \cong P_n$.

Conversely, suppose that G is neither an even cycle nor a path. Then, there exists at least one vertex of degree greater than two, say v in G, whence v is adjacent to at least three other vertices. That is, three edges are incident at the vertex v and hence the corresponding vertices in $L(G)$ are pairwise adjacent and hence form a triangle. By Proposition
2.5.3. $L(G)$ is not 1-uniform dcsl.

2.5.2 1-Uniform distance-compatible set-labelings of trees

The main aim of this section is to present an account of 1-uniform dcsl trees. In fact, we prove that all trees admit a 1-uniform dcsl. We have already proved that all finite stars are 1-uniform dcsl-graphs. In this section we consider different classes of 1-uniform dcsl-trees and develops an algorithmic method of labeling to establish that all trees are 1-uniform dcsl.

Theorem 2.5.19. Let G be a tree of diameter ≤ 3. Then G is a 1-uniform dcsl-graph.

Proof. If G is a tree of diameter less than or equal to three, then G is isomorphic to K_1, K_2, $K_{1,n}$ or $S_{m,n}$. By Figure 2.7, and by Theorem 2.5.8, K_1, K_2 and $K_{1,n}$ are 1-uniform dcsl-graphs. We will prove that $S_{m,n}$ is also 1-uniform dcsl.

$$S_{m,n} = \overline{K}_m + K_1 + K_1 + \overline{K}_n.$$

Let $u_1, u_2, u_3, \ldots, u_m$ be the m vertices of \overline{K}_m, u and v are the vertices of K_2 and let $v_1, v_2, v_3, \ldots, v_n$ are the n vertices of \overline{K}_n such that u is adjacent to $u_i, 1 \leq i \leq m$ and v is adjacent to $v_j, 1 \leq j \leq n$. Let
$X = \{1, 2, 3, \ldots, m+n, m+n+1\}$.

Define $f : V(S_{m,n}) \to 2^X$ defined by

$f(u) = \{1, 2\};$

$f(u_1) = \{1\};$

$f(u_2) = \{2\};$

$f(u_i) = \{1, 2, i\}, 3 \leq i \leq m;$

$f(v) = \{1, 2, m+1\};$

$f(v_j) = f(v) \cup \{m + 1 + j\}, 1 \leq j \leq n.$

Then, clearly $S_{m,n}$ is 1-uniform dcsl. Thus, all trees of diameter ≤ 3 is 1-uniform dcsl trees.

Figure 2.14 gives a 1-uniform dcsl of $S_{7,7}$.

Figure 2.14: 1-uniform dcsl of $S_{7,7}$

There exists 1-uniform dcsl trees with diameter greater than three.
Given a graph G, we denote by G^+ the graph obtained from G by augmenting a new vertex v' for each vertex v of G and augmenting a new edge vv'. In particular, P_n^+ is called a comb.

Theorem 2.5.20. The comb, P_n^+ admits a 1-uniform dcsl for all finite n.

Proof. Consider the comb G of $2n$ vertices. Let $v_1, v_2, v_3, \ldots, v_n$ be the vertices of its stem P_n and $u_1, u_2, u_3, \ldots, u_n$ are the pendant vertices.

Let $X = \{1, 2, 3, \ldots, 2n - 1\}$

Define $f : V(P_n^+) \rightarrow 2^X$ defined by

$f(u_1) = \emptyset$;

$f(v_1) = \{1\}$;

$f(v_i) = f(v_{i-1}) \cup \{2(i-1)\}, \ 2 \leq i \leq n$;

$f(u_j) = f(v_j) \cup \{2j-1\}, \ 2 \leq j \leq n$. Then the set-labeling f is indeed a 1-uniform dcsl of G.

The graph in Figure 2.15 displays a comb together with one of its 1-uniform dcsl. Note that the dscl-labeling defined in Theorem 2.5.20 is a set-indexer.

Given a graph $G = (V, E)$, we denote by G^{+k}, the graph obtained from G by augmenting k isolated vertices $v_1^1, v_2^2, \ldots, v_j^j$ and adjoining
Figure 2.15: 1-uniform dcsl of comb

\[v_i v_j, \ 1 \leq j \leq k \] to \(G \). In particular when \(k = 1 \), we get \(G^+ = G^{+1} \).

Also, \(P_n^{+k} \) is called the \(k \)-uniform caterpillar.

Figure 2.16: 1-uniform dcsl of caterpillar

Theorem 2.5.21. Every caterpillars admits a 1-uniform dcsl-labeling.

Proof. Let \(G \) be a caterpillar with \(m \) vertices. Let \(v_1, v_2, v_3, \ldots, v_n \) be the internal vertices of \(G \) and let \(p_i \) \((1 \leq i \leq n) \) be the number of
pendant vertices adjacent to v_i. Let v^j_i $(1 \leq j \leq p_i)$ be the pendant vertices adjacent to v_i $(1 \leq i \leq n)$.

Let $X = \{1, 2, 3, \ldots, m\}$

Define $f : V(G) \to 2^X$ by

$f(v_1) = \{1\}$;

$f(v_i) = f(v_{i-1}) \cup \{max(f(v^i_{i-1}) + 1\}, 2 \leq i \leq n$;

$f(v^i_i) = f(v_i) \cup \{max(f(v_i) + j\}, 1 \leq j \leq p_i, 1 \leq i \leq n$.

Now,

$| f^\oplus(v_i v_j) | = | f(v_i) \oplus f(v_j) | = j - i = d(v_i, v_j), 1 \leq i < j \leq n$.

Also,

$| f^\oplus(v_i v^j_i) | = | f(v_i) \oplus f(v^j_i) | = 1 = d(v_i, v^j_i), 1 \leq i \leq n, 1 \leq j \leq p_i$.

Again,

$| f^\oplus(v^j_i v^k_i) | = | f(v^j_i) \oplus f(v^k_i) | = | f(v_i) \cup \{maxf(v_i) + j\} \oplus f(v_i) \cup \{maxf(v_i) + k\} = 2 = d(v^j_i, v^k_i), 1 \leq i \leq n, 1 \leq j < k \leq p_i$.

Again,

$| f^\oplus(v^j_i v^k_k) | = | f(v^j_i) \oplus f(v^k_k) | = | f(v_i) \cup \{maxf(v_i) + j\} \oplus f(v_k) \cup \{maxf(v_k) + l\} | = k - i + 2 = d(v^j_i, v^l_k), 1 \leq i < k \leq n, 1 \leq j \leq p_i, 1 \leq l \leq p_k$.

Thus, f is a 1-uniform dcs1. □
A 1-uniform dcsl of a caterpillar is depicted in Figure 2.16.

![Figure 2.17: 1-uniform dcsl of olive tree](image)

Theorem 2.5.22. Every olive tree admits a 1-uniform dcsl.

Proof. Let T be an olive tree and v be the root vertex. Let $d(v) = m \geq 2$, and the vertices on its j^{th} level, i^{th} position be denoted by v_j^i, $1 \leq j \leq m$, $1 \leq i \leq m - j + 1$. Let $X = \{1, 2, \ldots, n\}$ where n is the order of T. Now, define $f : V(G) \to 2^X$, defined by

- $f(v) = \{1\}$;
- $f(v_1^i) = \{1, i+1\}$, $1 \leq i \leq m$;
- $f(v_j^1) = f(v_{j-1}^2) \cup \{\max(f(v_{j-1}^{m-j+2}))\}$, $2 \leq j \leq m$;
- $f(v_j^i) = f(v_{j-1}^{i+1}) \cup \{\max(f(v_j^{i-1}))\}$, $2 \leq i \leq m - j + 1$, $1 \leq j \leq m$.
Clearly f is a 1-uniform dcsl of the olive tree.

\[\text{Theorem 2.5.22 is illustrated in Figure 2.17.} \]

Theorem 2.5.23. Every binary tree admits a 1-uniform dcsl.

Proof. Let T_b be a binary tree with n levels and p vertices. Let v_0 be the root vertex of T_b and v^j_i ($1 \leq i \leq n$, $1 \leq j \leq 2^i$) be the vertices of the binary tree with v_0 as the root vertex. Let v^j_i be the parent vertex of v^j_{i+1} and v^j_{i+1} and let $m_{ij} = \text{max} f(v^j_i)$. Let $X = \{1, 2, 3, \ldots, p\}$. Define $f : V(T_b) \rightarrow 2^X$, defined by

\[
\begin{align*}
f(v_0) &= \{1\}; \\
f(v^j_{i+1}) &= f(v^j_i) \cup \{2m_{ij}\}; \\
f(v^j_{i+1}) &= f(v^j_i) \cup \{2m_{ij} + 1\}, 1 \leq i \leq n, 1 \leq j \leq 2^i.
\end{align*}
\]

Clearly, f is a 1-uniform dcsl of the binary tree. \[\square \]

Figure [2.18](#) illustrates our construction of the dcsl of a binary tree described in the proof of the Theorem 2.5.23. Now, we are in a position to prove that all trees admit 1-uniform dcsl.

Theorem 2.5.24. Every tree admits a 1-uniform dcsl.

Proof. Let T be a tree of order n. Choose any vertex say v_1, and apply BFS algorithm to the tree T, with v_1 as the root.
Define $f : V(G) \to 2^X$ defined as given below.

v_1 is the vertex at the 0th level. Define $f(v_1) = \{1\}$.

Let $v_2, v_3, \ldots, v_{n_1}$ be the $n_1 - 1$ vertices in the first level. Assign $f(v_i) = f(v_1) \cup \{i\}$, $2 \leq i \leq n_1 - 1$.

In general, if v_j is the j^{th} vertex of T, which is on the m^{th} level, define $f(v_j) = f(v_j^p) \cup \{j\}$, where v_j^p is the parent of v_j on the $m - 1^{th}$ level.

The assignment f is one-one, since at each vertex we have included a new distinct vertex. Also, if v_i is on the l^{th} level then, $|f(v_i)| = l + 1$, $1 \leq i \leq n$.

Also, since at each level, at each vertex, we are including exactly one distinct element of the underlying set X, $d(v_1, v_j) = l - 1 = |f(v_1) \oplus f(v_j)|$, $2 \leq j \leq n$, where v_j is a vertex on the l^{th} level.
\[d(v_h, v_k) = l + m - 2h = | f(v_h) \oplus f(v_k) |, \quad 1 \leq h \leq k \leq n, \]

where \(v_h \) is any vertex at \(l \)-th level, \(v_k \) any vertex at \(m \)-th level and \(h \) is nothing but the number of level (or generation) at which, \(v_h \) and \(v_k \) have the first common forefather \(v_i \). Hence we conclude that \(f \) is a 1-uniform dcsl for the tree \(T \).

An arbitrary tree and its corresponding 1-uniform dcsl are shown in Figure 2.19 and in Figure 2.20.

![Figure 2.19: An arbitrary tree](image)

We have established that all trees are 1-uniform dcsl-graphs. So the natural question is to see whether a unicyclic graph which is obtained from a tree by adding one backedge is 1-uniform dcsl. Next theorem shows that a unicyclic graph is a 1-uniform dcsl-graph if and only if the cycle is even.
Chapter 2

Theorem 2.5.25. Unicyclic graphs are 1-uniform dcsl-graphs if and only if the cycle is even.

Proof. Let G be a graph with unique even cycle, say C_n. Let $V(C_n) = \{v_1, v_2, \ldots, v_n\}$. Let T_i be the tree attached to v_i in the sense, v_i can be taken as the root vertex of T_i. Let v_{ij}^k be the vertices of the rooted tree T_i, $2 \leq j \leq l_i$ where l_i is the number of levels of T_i and $v_{i1}^0 = v_i$. Take $X = \{1, 2, \ldots, |V(G)|\}$. Let f be a 1-uniform dcsl of C_n, so that the subset, X_i of X is assigned to the vertex v_i of C_n, such that $X_i \neq X_j$ if $v_i \neq v_j$. Now, extend the dcsl f to the whole graph by defining $f(v_{i2}^1) = f(v_{i1}^1) \cup \max\{\max (X_i) + 1\}$, where i varies over all vertices which are root vertex of some T_i. Also, define $f(v_{ij}^k) = f(v_{ij}^{k-1}) \cup \max\{f(v_{ij}^{k-1}) + j\}$, $k \geq 2, 2 \leq j \leq l_i$. One can easily verify
that f is a dcsl of G.

Conversely, if G contains a unique odd cycle then, by Theorem 2.5.13, G cannot admit a dcsl.

Remark 2.5.5. In the construction of a unicyclic graph from a tree by adding a backedge, we cannot join the vertices of the tree on the same level or vertices on the levels i and $i + j$ where j is even. Since, otherwise it produce an odd cycle.

Remark 2.5.6. It is interesting to note that we can construct as many number of 1-uniform dcsl-graphs by attaching trees of different order to the vertices of a 1-uniform dcsl cycle. We can relabel the vertices of the resulting graph or we can give suitable labels to the vertices of trees such that the new graph is 1-uniform dcsl-graph.

We have seen that paths admit 1-uniform dcsl. We shall now prove that the cartesian product of two paths also admit 1-uniform dcsl.

Theorem 2.5.26. The cartesian product $P_m \times P_n$ of two paths P_m and P_n is a dcsl-graph.

Proof. The product graph of P_m and P_n is a grid of m rows and n columns. Let $v_{1j}, v_{2j}, \ldots, v_{mj}$, $1 \leq j \leq n$ are the vertices of m rows of the grid $P_m \times P_n$. Take $X = \{1, 2, \ldots, m + n - 1\}$.
Chapter 2

Define $f : V(P_m \times P_n) \rightarrow 2^X$ by

$$f(v_{11}) = \{1\}$$

$$f(v_{1j}) = f(v_{1j-1}) \cup \{j\}, \quad 1 \leq j \leq n$$

$$f(v_{ij}) = f(v_{i-1j}) \cup \{n + j - 1\}, \quad 1 \leq i \leq m, \quad 1 \leq j \leq n$$

Clearly f is a dcs1 for $P_m \times P_n$ and hence the theorem.

\[\square\]

Figure 2.21: A 1-uniform dcs1 product graph

\textbf{Theorem 2.5.27.} The cartesian product of a star $K_{1,n}$ and a path P_m, $K_{1,n} \times P_m$ is a dcs1-graph.

\textit{Proof.} Let $X = \{1, 2, \ldots, m + n\}$ and $V(K_{1,n}) = \{u_i\}, \quad 1 \leq i \leq n + 1$ and $V(P_m) = \{v_j\}, \quad 1 \leq j \leq m + 1$. Define $f : V(K_{1,n} \times P_m) \rightarrow 2^X$ defined by

$$f(u_1v_1) = \{1\};$$
Chapter 2

\[f(u_1v_2) = \{1, n + 2\}; \]
\[f(u_1v_j) = \{1, n + 2, n + 3, \ldots, n + j\} \quad 3 \leq j \leq m + 1 \]
\[f(u_i v_j) = \{1, i, n + 2, n + 3, \ldots, n + j\} \quad 2 \leq i \leq n + 1, \quad 3 \leq j \leq m + 1\}.

Clearly, \(f \) is one-one and \(f \) is a 1-uniform dcsl.

\[\Box \]

Theorem 2.5.28. The cartesian product \(K_{1,n} \times K_{1,m} \) is a dcsl-graph.

Proof. Let \(X = \{1, 2, \ldots, m + n + 1\} \) and \(V(K_{1,n}) = \{u_i, \ 1 \leq i \leq n + 1\} \) and \(V(P_m) = \{v_j, \ 1 \leq j \leq m\} \). Let \(u_1 \) is the central vertex of \(K_{1,n} \) and \(v_1 \) is the central vertex of \(K_{1,m} \). A labeling for \(V(K_{1,n} \times K_{m,1}) \) is given in the table 2.22.

<table>
<thead>
<tr>
<th>(v_1)</th>
<th>(v_2)</th>
<th>(v_3)</th>
<th>(v_4)</th>
<th>(v_5)</th>
<th>(\ldots)</th>
<th>(v_m)</th>
<th>(v_{m+1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_1)</td>
<td>{1}</td>
<td>{1,n+2}</td>
<td>{1,n+3}</td>
<td>{1,n+4}</td>
<td>{1,n+5}</td>
<td>(\ldots)</td>
<td>{1,n+m}</td>
</tr>
<tr>
<td>(u_2)</td>
<td>{1,2}</td>
<td>{1,2,n+2}</td>
<td>{1,2,n+3}</td>
<td>{1,2,n+4}</td>
<td>{1,2,n+5}</td>
<td>(\ldots)</td>
<td>{1,2,n+m}</td>
</tr>
<tr>
<td>(u_3)</td>
<td>{1,3}</td>
<td>{1,3,n+2}</td>
<td>{1,3,n+3}</td>
<td>{1,3,n+4}</td>
<td>{1,3,n+5}</td>
<td>(\ldots)</td>
<td>{1,3,n+m}</td>
</tr>
<tr>
<td>(u_4)</td>
<td>{1,4}</td>
<td>{1,4,n+2}</td>
<td>{1,4,n+3}</td>
<td>{1,4,n+4}</td>
<td>{1,4,n+5}</td>
<td>(\ldots)</td>
<td>{1,4,n+m}</td>
</tr>
<tr>
<td>(\ldots)</td>
</tr>
<tr>
<td>(u_n)</td>
<td>{1,n}</td>
<td>{1,n,n+2}</td>
<td>{1,n,n+3}</td>
<td>{1,n,n+4}</td>
<td>{1,n,n+5}</td>
<td>(\ldots)</td>
<td>{1,n,n+m}</td>
</tr>
<tr>
<td>(u_{m+1})</td>
<td>{1,n+1}</td>
<td>{1,n+1,n+2}</td>
<td>{1,n+1,n+3}</td>
<td>{1,n+1,n+4}</td>
<td>{1,n+1,n+5}</td>
<td>(\ldots)</td>
<td>{1,n+1,n+m}</td>
</tr>
</tbody>
</table>

Figure 2.22: A 1-uniform dcsl of \(K_{1,n} \times K_{1,m} \)

One can easily check that \(f \) is one-one and \(f \) is a 1-uniform dcsl. \(\Box \)
Theorem 2.23 is illustrated in Figure 2.23

Remark 2.5.7. It can be easily shown that the product of two 1-uniform dcsl-graphs is again 1-uniform dcsl.

Recall that the minimum cardinality of the underlying set X such that G admits a 1-uniform dcsl is called the 1-uniform dcsl index δ_d of G. Now, we calculate the dcsl index of certain 1-uniform dcsl-graphs

Proposition 2.5.29. For any 1-uniform dcsl-graph G, $\delta_d(G) \geq \text{diam}(G)$.

Proof. $\text{diam}(G) = \max \{d(v_i, v_j), v_i, v_j \in V(G)\}$. Now, if X_i, X_j are subsets of X such that $f(v_i) = X_i$, $f(v_j) = X_j$, then $|X_i \oplus X_j| = d(v_i, v_j)$, only if $|X| \geq d(v_i, v_j), \forall i, j$. Thus, $|X| \geq \text{diam}(G)$. Therefore, $\delta_d(G) \geq \text{diam}(G)$. \hfill \square
The natural question under investigation is whether the bound for $\delta_d(G)$ obtained in Proposition 2.5.29 is attainable. The following lemma answers this question; affirmatively.

Lemma 2.5.30. $\delta_d(P_n) = n - 1$, $n > 2$

Proof. Suppose P_n is 1-uniform dcsl with a set X of cardinality $n - 2$. Then, $|X_1 \oplus X_n| \leq n - 2$, where $f(v_1) = X_1$ and $f(v_n) = X_n$. But, $d(v_1, v_n) = n - 1$, a contradiction. Hence, $\delta_d(P_n) \geq n - 1$. Let $X = \{1, 2, \ldots, n - 1\}$. Consider the labeling $f : V(G) \rightarrow 2^X$ defined by $f(v_1) = \{1\}$, $f(v_2) = \{1, 2\}$, $f(v_3) = \{2\}$ and $f(v_i) = \{2, 3, \ldots, i - 1\}$, $4 \leq i \leq n$. Then, $|f^\oplus(v_1v_2)| = 1$, $|f^\oplus(v_1v_3)| = 2$ and $|f^\oplus(v_2v_3)| = 1$. Now, $f^\oplus(v_iv_j) = f(v_i) \oplus f(v_j) = \{2, 3, \ldots, i - 1\} \oplus \{2, 3, \ldots, j - 1\}$, $(i \leq j) = \{i, i + 1, i + 2, \ldots, j - 1\}$, which implies $|f^\oplus(v_iv_j)| = j - i = d(v_i, v_j)$. Also, $d(v_j, v_i)(i \geq 4) = i - j = |f^\oplus(v_jv_i)| (j = 1, 2, 3)$. Thus, f is a 1-uniform dcsl of P_n, which is unique up to the cardinalities of the sets in the set-labeling f. □

Theorem 2.5.31. $\delta_d(K_{1,n}) = n$.

Proof. Suppose $K_{1,n}$ has a 1-uniform dcsl with respect to the ground set $X = \{1, 2, \ldots, n - 1\}$. Let $v_1, v_2, v_3, \ldots, v_{n+1}$ be the vertices of $K_{1,n}$ with v_1 as the central vertex.

Case i: $|f(v_1)| = 1$. Then, it is necessary that $|f(v_i)| = 2$ for all i, $2 \leq i \leq n + 1$ and $f(v_1) \subset f(v_2)$. But, the number of subsets of X with cardinality 2 containing $f(v_1)$ is $n - 2$, which in turn implies one vertex remains unlabeled, a contradiction.
Case ii: \(| f(v_1) | = k, k > 1\). Then, \(| f(v_i) | = k + 1 \) or \(k - 1 \),
\(2 \leq i \leq n + 1 \).

(a) If \(| f(v_i) | = k + 1 \forall i\), then \(f(v_1) \subset f(v_i) \forall i \). But, the number of such subsets is less than \(n \), again a contradiction as in Case(i).

(b) If \(| f(v_i) | = k - 1 \), \(k > 2 \forall i\), then, \(f(v_i) \subset f(v_1) \forall i \) and, the number of such subsets is less than \(n \), again a contradiction.

If \(| f(v_i) | = k + 1\), for some \(i \) and \(k - 1 \) for some \(i \) then, some vertices would remain unlabeled, again a contradiction. Hence, we conclude that \(\delta_d(K_{1,n}) = n \).

It is a tedious task to find the dcsl index of an arbitrary tree. We strongly believe that it may be an NP-complete problem. However, we find the 1-uniform dcsl index \(\delta_d \) of the classes of trees with less than 6 vertices and of diameters less than or equal to three. We denote a tree on \(n \) vertices with diameter \(d \) by \(T_n^d \).

Proposition 2.5.32. 1-uniform dcsl index \(\delta_d(T_n^d) \leq n - 1 \) for \(n \leq 6 \) and \(d \leq 3 \).

We consider each classes seperately as follows.

1. \(\delta_d(T_2^1) = 1 \).

Let \(v_1 \) and \(v_2 \) are the two vertices of \(T_2^1 \). Let \(X = \{1\} \). Define \(f(v_1) = \emptyset \) and \(f(v_2) = \{1\} \). Then, this is a 1-uniform dcsl with dcsl set \(X \). Therefore \(\delta_d(T_2^1) \leq 1 \). Also by Theorem 2.5.29 \(\delta_d(T_2^1) \geq 1 \). Hence \(\delta_d(T_2^1) = 1 \).
2. \(\delta_d(T^2_3) = 2 \).

Let \(v_1, v_2 \) and \(v_3 \) are the three vertices of \(T^2_3 \). Define \(f(v_1) = \{1\}, f(v_2) = \{1, 2\} \) and \(f(v_3) = \{2\} \). Then, \(f \) is a 1-uniform dcsl with dcsl set \(X = \{1, 2\} \). Therefore \(\delta_d(T^2_3) \leq 2 \). Also by Theorem 2.5.29 \(\delta_d(T^2_3) \geq 2 \). Hence, \(\delta_d(T^2_3) = 2 \).

3. \(\delta_d(T^3_4) = 3 \).

Let \(V(T^3_4) = \{v_1, v_2, v_3, v_4\} \). Let \(v_1 \) and \(v_4 \) are the antipodal vertices of \(T^3_4 \) and \(v_2 \) and \(v_3 \) are the internal vertices. Now, \(d((T^3_4)) = 3 \), implies \(\delta_d(T^3_4) \geq 3 \). Let \(X = \{1, 2, 3\} \). Define \(f : V(T^3_4) \rightarrow 2^X \) defined by, \(f(v_1) = \{1\}, f(v_2) = \{1, 3\}, f(v_3) = \{3\} \) and \(f(v_4) = \{2, 3\} \). Then, \(f \) is a 1-uniform dcsl and hence \(\delta_d(T^3_4) = 3 \).

4. \(\delta_d(T^3_5) = 4 \).

Figure 2.24: 1-uniform dcsl tree, \(T^3_5 \)
Consider, the tree given in Figure 2.24. Since, T_5^3 contains T_4^3 as an induced subgraph $\delta_d(T_5^3) \geq \delta_d(T_4^3)$. We already proved that $\delta_d(T_4^3) = 3$. Now, consider $x = \{1, 2, 3\}$. There are two different diametral path in T_5^3 and hence we cannot label the antipodal vertices with the subsets of X such that the resulting graph is a 1-uniform dcsl-graph. It is easy to see that the labeling given in Figure 2.24 is a 1-uniform dcsl. Hence, we can conclude that $\delta_d(T_5^3) = 4$.

5. $\delta_d(T_6^3) = 5$.

Consider the graphs shown in Figure 2.25. T_6^3 is isomorphic to one of these graphs.

The labeling given in Figure 2.25 is a 1-uniform dcsl. Also, if we take $X = \{1, 2, 3, 4\}$, we cannot label any pendant vertex by
X, since there are more than two diametral paths. Therefore,
\[\delta_d(T_6^3) = 5. \]

Remark 2.5.8. We strongly believe that 1-uniform dcsl index of an arbitrary tree of order n is $n - 1$; which we pose as a Conjecture.

Conjecture 3. $\delta_d(T) = n - 1$, where T is a tree of order n.

Theorem 2.5.33. 1-uniform dcsl index of an even cycle C_n is $\frac{n}{2} + 1$.

Proof. Let C_n be the even cycle with vertex set \{v_1, v_2, \ldots, v_n\}. Let $X = \{1, 2, \ldots, \frac{n}{2} + 1\}$. Define $f : V(C_n) \to 2^X$ defined by
\[
\begin{align*}
 f(v_1) &= \{1\}; \\
 f(v_2) &= \{1, 2\}; \\
 f(v_n) &= \{1, 3\}; \\
 f(v_3) &= \{1, 2, 4\}; \\
 f(v_{n-1}) &= \{1, 3, 5\}; \\
 & \vvdots
\end{align*}
\]
\[
\begin{align*}
 f(v_{\frac{n}{2}+1}) &= \{1, 2, \ldots, \frac{n}{2} + 1\}.
\end{align*}
\]
Then, this is a 1-uniform dcsl. Also, note that diameter of C_n is $\frac{n}{2}$, so that the minimum cardinality of X should necessarily be $\frac{n}{2} + 1$. Thus, 1-uniform dcsl index of an even cycle C_n is $\frac{n}{2} + 1$.

\qed
2.6 *k*-Uniform dcsl-graphs

This section is an attempt to generalize the concept of 1-uniform dcsl-graphs to *k*-uniform dcsl-graphs for an arbitrary value of *k*. A dcsl *f* of a graph *G* = (*V*, *E*) is *k*-uniform if all the constants of proportionality with respect to *f* are equal to *k*, and if *G* admits such a *k*-uniform dcsl for some positive integer *k*, then *G* is a *k*-uniform dcsl-graph.

Remark 2.6.1. The constant of proportionality in a dcsl-graph need not be an integer and also need not be uniform. If it is uniform then it should be an integer. For suppose *G* is a *k*-uniform dcsl-graph with the labeling *f*. Let *u* and *v* are any two adjacent vertices of *G*. Then by the definition of *k*-uniform dcsl-graph | *f*(*u*) ⊕ *f*(*v*) | = *k*(*d*(*u*, *v*)) = *k*, since *d*(*u*, *v*) = 1. Thus *k* is necessarily be an integer.

We already proved that paths are *k*-uniform dcsl-graphs for *k* = 1. It is interesting to check whether it is true for higher values of *k*. Here we prove that paths are 2-uniform dcsl-graphs too.

Theorem 2.6.1. All paths are 2-dcsl-graphs.

Proof. Let *P*ₙ be a path on *n* vertices. Let *X* = {1, 2, ..., 2*n*}. Define *f* : *V*(*P*ₙ) → 2*X* defined by *f*(*v*ᵢ) = {1, 2, ..., 2*i*}, 1 ≤ *i* ≤ *n*. Then, for all *n* ≥ *j* > *i* ≥ 1,

\[f^\oplus({v_i}{v_j}) = \{1, 2, \ldots, 2j\} - \{1, 2, \ldots, 2i\} = \{2i + 1, 2i + 2, \ldots, 2j\}. \]

Therefore, | *f*^\oplus\(^{\oplus}\)({v_i}{v_j}) | = 2*j* − 2*i* = 2(*j* − *i*) = 2(*d*(*v_i*, *v_j*)).

Thus, paths are 2-dcsl-graphs. □
Figure 2.26 gives a 2-dcsl of P_4.

![Diagram of 2-DCSL of P_4]

Figure 2.26: A 2-dcsl of P_4

Now, we prove that paths are arbitrarily k-uniform dcsl in the sense that paths are k-uniform dcsl for all integer values of k.

Theorem 2.6.2. Paths are k-uniform dcsl for all integer values of k

Proof. Let P_n be a path on n vertices $v_1, v_2, v_3, \ldots, v_n$. Let $X = \{1, 2, 3, \ldots, (n-1)k\}$. Define $f : V(P_n) \to 2^X$ defined by

\[
 f(v_1) = \emptyset, \\
 f(v_i) = \{1, 2, 3, \ldots, (i-1)k\}.
\]

Then,

\[
| f(v_1) \oplus f(v_i) | = | \{1, 2, 3, \ldots, (i-1)k\} | \\
= (i-1)k = k(d(v_1, v_i)) \text{ for } 2 \leq i \leq n
\]

and

\[
| f(v_i) \oplus f(v_j) | = | \{1, 2, 3, \ldots, (i-1)k\} \oplus \{1, 2, 3, \ldots, (j-1)k\} | \\
= (j-1)k - (i-1)k = (j-i)k \\
= k(d(v_i, v_j)) \text{ for } 2 \leq i < j \leq n.
\]

Thus P_n is k-uniform dcsl-graph for all integer values of k. \qed

Remark 2.6.2. In Theorem 2.5.8, we proved that stars $K_{1,n}$ with n spokes admit 1-uniform dcsl. In the following theorem we prove that stars are arbitrarily k-uniform dcsl-graphs.
Theorem 2.6.3. \(K_{1,n} \) with \(n \) spokes admit \(k \)-uniform dcsl.

Proof. Let \(v_0, v_1, \ldots, v_n \) are the \(n + 1 \) vertices of \(K_{1,n} \) with \(v_0 \) as the central vertex. Let \(X = \{1, 2, \ldots, nk\} \)
Define \(f : V(K_{1,n}) \to 2^X \) defined by
\[
f(v_0) = \emptyset, \\
f(v_1) \equiv \{1, 2, \ldots, k\},
\]
and
\[
f(v_i) = \{(i - 1)k + 1, (i - 1)k + 2, \ldots, ik\}, \ 2 \leq i \leq n.
\]
Then,
\[
|f(v_0) \oplus f(v_i)| = k = k(d(v_0, v_i))
\]
and,
\[
|f(v_i) \oplus f(v_j)| = 2k = k(d(v_i, v_j)).
\]
Hence, stars are \(k \)-uniform dcsl-graphs.

Remark 2.6.3. Theorem 2.5.12 asserts that cycle \(C_n \) (\(n \geq 3 \)) is \(1 \)-uniform dcsl if and only if \(n \) is even. The next two theorems, Theorem 2.6.4 and Theorem 2.6.5 establish that even cycles are arbitrarily \(k \)-uniform but, odd cycles admit \(k \)-uniform dcsl only when \(k \) is even.

Theorem 2.6.4. Every even cycle is \(k \)-uniform dcsl-graph.

Proof. Consider cycle \(C_n \), with \(n \) vertices where \(n \) is even. Let \(V(C_n) = \{v_1, v_2, v_3, \ldots, v_n\} \) and let \(X = \{1, 2, 3, \ldots, rk\} \) where \(r \) is the radius of the cycle.
Define \(f : V(C_n) \to 2^X \) defined by,
\[
f(v_1) = \emptyset; \\
f(v_i) = \{1, 2, 3, \ldots, (i - 1)k\}, \ 2 \leq i \leq \frac{n}{2} + 1;
\]
\[f(v_{\frac{n}{2}+j}) = \{(j-1)k + 1, (j-1)k + 2, \ldots, rk\}, 2 \leq j \leq \frac{n}{2}. \]

Then \(|f(v_1) \oplus f(v_i)| = k(i-1) = k(d(v_1, v_i)), 2 \leq i \leq \frac{n}{2} + 1. \)

When \(i < j, \)
\[|f(v_i) \oplus f(v_{\frac{n}{2}+j})| = |\{1, 2, 3, \ldots, (i-1)k\} \oplus \{(j-1)k + 1, (j-1)k + 2, \ldots, rk\}| = (j-1)k - (i-1)k = (j-i)k = k(d(v_i, v_{\frac{n}{2}+j})) \]
and, when \(i > j, \)
\[|f(v_i) \oplus f(v_{\frac{n}{2}+j})| = (j-1)k + (r-(i-1))k = jk + rk - ik = (j-i+r)k = k(d(v_i, v_{\frac{n}{2}+j})). \]

Also, when \(i = j, \)
\[|f(v_i) \oplus f(v_{\frac{n}{2}+j})| = |\{1, 2, 3, \ldots, (i-1)k\} \oplus \{(i-1)k+1, (i-1)k+2, \ldots, rk\}| = |\{1, 2, 3, \ldots, rk\}| = rk = k(d(v_i, v_{\frac{n}{2}+j})). \]

Thus, \(f \) is a \(k \)-uniform dcsl-graph.

\[\square \]

Theorem 2.6.5. Odd cycles are \(k \)-uniform dcsl, then \(k \) is even.

Proof. Let \(C_n \) be an odd cycle with \(n \) vertices \(v_1, v_2, v_3, \ldots, v_n \). Suppose if possible \(C_n \) admits a \(k \)-uniform dcsl \(f \) with the dcsl set \(X \). Let \(f(v_i) = A_i, A_i \subseteq X, 1 \leq i \leq n. \)

Case 1: \(A_i = \emptyset \) for some \(i. \)

Without lose of generality, assume that \(A_1 = \emptyset \). Then, \(|A_2| = |A_n| = k, |A_3| = |A_{n-1}| = 2k, \ldots, |A_{\frac{n}{2}}| = |A_{\frac{n}{2}+1}| = \left\lceil \frac{n}{2} \right\rceil \cdot k \).

Suppose \(A_{\frac{n}{2}} \) and \(A_{\frac{n}{2}+1} \) have \(m \) entries in common. Then,
\[|A_{\frac{n}{2}}| + |A_{\frac{n}{2}+1}| = k \Rightarrow \left\lceil \frac{n}{2} \right\rceil \cdot k - m + \left\lceil \frac{n}{2} \right\rceil \cdot k - m = k \Rightarrow 2 \cdot \left\lceil \frac{n}{2} \right\rceil \cdot k - 2m = k \Rightarrow (2 \cdot \left\lceil \frac{n}{2} \right\rceil - 1)k = 2m. \]
This is possible only when
Chapter 2

k is even, since $2\lceil \frac{n}{2} \rceil - 1$ is odd. If $A_{\lceil \frac{n}{2} \rceil}$ and $A_{\lceil \frac{n}{2} \rceil+1}$ have no element in common then,

$$k = |A_{\lceil \frac{n}{2} \rceil} \oplus A_{\lceil \frac{n}{2} \rceil+1}| = \lceil \frac{n}{2} \rceil.k + \lceil \frac{n}{2} \rceil.k.$$ But, then $\lceil \frac{n}{2} \rceil.k = k \Rightarrow 2\lceil \frac{n}{2} \rceil = 1 \Rightarrow \lceil \frac{n}{2} \rceil = \frac{1}{2}$, which is absurd. Hence empty set cannot be assigned to any of the vertices of C_n.

Case 2: $A_i \neq \emptyset$ for all i, $1 \leq i \leq n$. By our assumption, $|A_i \oplus A_{i+1}| = k$, $1 \leq i \leq n - 1$ and, $|A_i \oplus A_{i+2}| = 2k$, $1 \leq i \leq n - 2$.

Suppose that, $|A_i| = C_i$ and, A_i and A_j have l_i^j elements in common where, $1 \leq i < j \leq n - 1$. Then, by our assumption,

$$|A_1 \oplus A_3| = C_1 + C_3 - 2l_1^3 = 2k;$$

$$|A_3 \oplus A_5| = C_3 + C_5 - 2l_3^5 = 2k;$$

$$|A_5 \oplus A_7| = C_5 + C_7 - 2l_5^7 = 2k;$$

$$\ldots$$

$$\ldots$$

$$|A_{n-2} \oplus A_n| = C_{n-2} + C_n - 2l_{n-2}^n = 2k.$$ From the above equations, we get, $C_i + C_{i+2}$ is even, $1 \leq i \leq n - 2$, i odd.

This is possible only when both C_i and C_{i+2} either both even or both odd. That is, either C_{2i-1} is odd for all i, $1 \leq i \leq \frac{n+1}{2}$ or C_{2i-1} is even for all i, $1 \leq i \leq \frac{n+1}{2}$.

Subcase 1: C_{2i-1} is odd for all i, $1 \leq i \leq \frac{n+1}{2}$

In this case, $|A_1 \oplus A_n| = C_1 + C_n - 2l_1^n = k$. Now, since, $C_1 + C_n$ is even, k is also an even number.

Subcase 2: C_{2i-1} is even for all i, $1 \leq i \leq \frac{n+1}{2}$.
We have, \(| A_1 \oplus A_n | = C_1 + C_n - 2l_1^n = k\). In this case also \(k\) is an even number since, \(C_1 + C_n\) is even. Thus the theorem is established.

Corollary 2.6.6. A non-bipartite graph \(G\) is \(k\)-uniform dcsl \((k > 1)\), then \(k\) is even.

Proof. Let \(G\) be a non-bipartite graph which admits a \(k\)-uniform dcsl. Then by Theorem 2.6.5 \(k\) should be an even number. Thus a non-bipartite graph \(G\) is \(k\)-uniform dcsl then, \(k\) is even.

Remark 2.6.4. In Theorem 2.5.2, we proved that the complete graph \(K_n\) admits 1-uniform dcsl if and only if \(n \in \{1, 2\}\). Hence it is interesting to find the values of \(k\) for which complete graph \(K_n\) admits \(k\)-uniform dcsl. The following theorem characterizes complete graph \(K_n(n > 3)\) which admits \(k\)-uniform dcsl.

Theorem 2.6.7. The complete graph \(K_n(n > 3)\) is \(k\)-uniform dcsl if and only if \(k\) is even.

Proof. Let \(K_n\) be the complete graph on \(n\) vertices \((n > 3)\), \(v_1, v_2, \ldots, v_n\). Let \(k\) be any arbitrary even number and, let \(X = \{1, 2, 3, \ldots, n^k/2\}\). Define \(f : V(K_n) \to 2^X\) defined by

\[f(v_1) = \{1, 2, \ldots, \frac{k}{2}\} \text{ and, } f(v_i) = \{(i - 1)\frac{k}{2} + j, 1 \leq j \leq \frac{k}{2}\}, 2 \leq i \leq n. \]

Clearly, \(f\) is injective. Also, for any two arbitrarily chosen distinct vertices \(v_x, v_y\) of \(K_n\), we have, \(| f_\oplus(v_x, v_y) | = |f(v_x) \cup f(v_y) - (f(v_x) \cap f(v_y))| = |f(v_x)| + f(v_y)| = \frac{k}{2} + \frac{k}{2} = k\). Hence, \(f\) is a \(k\)-uniform-dcsl of \(K_n\).
Converse of the theorem follows from Corrolary 2.6.6, since K_n is a non-bipartite graph.

Figure 2.27 gives the dcs1 of K_4 with $k = 2$.

![Figure 2.27: A 2-dcs1 of K_4](image)

Remark 2.6.5. Deletion of an edge from k-dcs1 complete graph does not violate the k-dcs1 property, it may be k-dcs1 with a distinct value of k and with a different labeling.
2.7 References

16. F. Harary, Graph Theory, Addison Wesley, Reading Massachusetts, 1969.

