LIST OF TABLE

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Table Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Selection of Test</td>
<td>70</td>
</tr>
<tr>
<td>3.2</td>
<td>Correlation Co-Efficient of Test-Retest Score</td>
<td>71</td>
</tr>
<tr>
<td>3.3</td>
<td>Training Schedule for Weight Training Group</td>
<td>80</td>
</tr>
<tr>
<td>4.1</td>
<td>Analysis of covariance of Pre-Test, Post-Test and Adjusted Post-Test Mean on Speed of Experimental Groups and Control Group</td>
<td>84</td>
</tr>
<tr>
<td>4.2</td>
<td>Ordered Scheffe’s Post Hoc Test Mean Differences on Speed among Three Groups</td>
<td>85</td>
</tr>
<tr>
<td>4.3</td>
<td>Analysis of covariance of Pre-Test, Post-Test and Adjusted Post-Test Mean on Explosive Power of Experimental Groups and Control Group</td>
<td>87</td>
</tr>
<tr>
<td>4.4</td>
<td>Ordered Scheffe’s Post Hoc Test Mean Differences on Explosive Power among Three Groups</td>
<td>88</td>
</tr>
<tr>
<td>4.5</td>
<td>Analysis of covariance of Pre-Test, Post-Test and Adjusted Mean Post-Test on Agility of Experimental Groups and Control Group</td>
<td>90</td>
</tr>
<tr>
<td>4.6</td>
<td>Ordered Scheffe’s Post Hoc Test Mean Differences on Agility among Three Groups</td>
<td>91</td>
</tr>
<tr>
<td>4.7</td>
<td>Analysis of covariance of Pre-Test, Post-Test and Adjusted Post-Test Mean on Flexibility of Experimental Groups and Control Group</td>
<td>93</td>
</tr>
<tr>
<td>4.8</td>
<td>Ordered Scheffe’s Post Hoc Test Mean Differences on Flexibility among Three Groups</td>
<td>94</td>
</tr>
<tr>
<td>4.9</td>
<td>Analysis of covariance of Pre-Test, Post-Test and Adjusted Post-Test Mean on Resting Pulse Rate of Experimental Groups and Control Group</td>
<td>96</td>
</tr>
</tbody>
</table>
4.10 Ordered Scheffe’s Post Hoc Test Mean Differences on Resting Pulse Rate among Three Groups

4.11 Analysis of covariance of Pre-Test, Post-Test and Adjusted Post-Test Mean on Vital Capacity of Experimental Groups and Control Group

4.12 Ordered Scheffe’s Post Hoc Test Mean Differences on Vital Capacity among Three Groups

4.13 Analysis of Covariance of Pre-Test, Post-Test and Adjusted Post-Test Mean on Systolic Blood Pressure of Experimental Groups and Control Group

4.14 Ordered Scheffe’s Post Hoc Test Mean Differences on Systolic Blood Pressure Among Three Groups

4.15 Analysis of Covariance of Pre-Test, Post-Test and Adjusted Post-Test Mean on Diastolic Blood Pressure of Experimental Groups and Control Group

4.16 Ordered Scheffe’s Post Hoc Test Mean Differences on Diastolic Blood Pressure among Three Groups

4.17 Analysis of Covariance of Pre-Test, Post-Test and Adjusted Post-Test Mean on Cardio Respiratory Endurance of Experimental Groups and Control Group

4.18 Ordered Scheffe’s Post Hoc Test Mean Differences on Cardio Respiratory Endurance among Three Groups
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>LIST OF TABLE</th>
<th>XIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>XV</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION

1.1 BACKGROUND
1.7 STATEMENT OF THE PROBLEM
1.8 OBJECTIVES OF THE STUDY
1.9 DELIMITATIONS
1.10 LIMITATIONS
1.11 HYPOTHESIS
1.12 OPERATIONAL DEFINITIONS OF TERM
1.13 SIGNIFICANCE OF THE STUDY

II REVIEW OF THE LITERATURE

21-68

III METHODOLOGY

3.1 SELECTION OF SUBJECTS
3.2 EXPERIMENTAL VARIABLES AND GROUPS
3.3 CRITERION MEASURES
3.4 COLLECTION OF DATA
3.5 RELIABILITY OF THE DATA
3.6 RELIABILITY OF THE INSTRUMENTS
3.7 RELIABILITY OF THE TESTER
3.8 ORIENTATION OF SUBJECT
3.9 EXPERIMENTAL DESIGN
3.10 ADMINISTRATION OF TESTS
3.11 ADMINISTRATION OF TRAINING

XII
<table>
<thead>
<tr>
<th>Programme Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.12 Statistical Technique</td>
<td>81</td>
</tr>
<tr>
<td>IV Analysis and Interpretation of Data</td>
<td>82-113</td>
</tr>
<tr>
<td>4.1 Overview</td>
<td>82</td>
</tr>
<tr>
<td>4.2 Test of Significance</td>
<td>82</td>
</tr>
<tr>
<td>4.3 Level of Significance</td>
<td>83</td>
</tr>
<tr>
<td>4.4 Discussion of Findings</td>
<td>110</td>
</tr>
<tr>
<td>4.5 Discussion of Hypothesis</td>
<td>113</td>
</tr>
<tr>
<td>V Summary, Conclusions and Recommendations</td>
<td>114-116</td>
</tr>
<tr>
<td>5.1 Summary</td>
<td>114</td>
</tr>
<tr>
<td>5.2 Conclusions</td>
<td>114</td>
</tr>
<tr>
<td>5.3 Recommendations</td>
<td>115</td>
</tr>
<tr>
<td>5.4 Utility of Research</td>
<td>116</td>
</tr>
<tr>
<td>Appendices</td>
<td>117-135</td>
</tr>
<tr>
<td>Bibliography</td>
<td>136-147</td>
</tr>
</tbody>
</table>
APPENDICES – I

SCORE OF PHYSICAL AND PHYSIOLOGICAL VARIABLE OF CIRCUIT TRAINING

<table>
<thead>
<tr>
<th>Sr. NO</th>
<th>Speed (50 M Dash)</th>
<th>Explosive Power (SBJ)</th>
<th>Agility (Shuttle Run)</th>
<th>Flexibility (Sit and Reach)</th>
<th>Resting Pulse Rate (DHRM)</th>
<th>Vital Capacity (DDS)</th>
<th>Blood Pressure (Systolic)</th>
<th>Blood Pressure (Diastolic)</th>
<th>CRE (Cooper Test)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre Test</td>
<td>Post Test</td>
<td>Pre Test</td>
<td>Post Test</td>
<td>Pre Test</td>
<td>Post Test</td>
<td>Pre Test</td>
<td>Post Test</td>
<td>Pre Test</td>
</tr>
<tr>
<td>1</td>
<td>6.62</td>
<td>5.97</td>
<td>1.81</td>
<td>1.92</td>
<td>9.64</td>
<td>9.56</td>
<td>18.5</td>
<td>23.0</td>
<td>72</td>
</tr>
<tr>
<td>2</td>
<td>5.8</td>
<td>5.1</td>
<td>1.86</td>
<td>1.94</td>
<td>9.41</td>
<td>9.26</td>
<td>19.0</td>
<td>21.5</td>
<td>73</td>
</tr>
<tr>
<td>3</td>
<td>5.75</td>
<td>5.3</td>
<td>1.8</td>
<td>1.89</td>
<td>9.34</td>
<td>9.19</td>
<td>17.0</td>
<td>20.5</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>5.95</td>
<td>5.2</td>
<td>1.85</td>
<td>1.93</td>
<td>9.29</td>
<td>9.18</td>
<td>17.5</td>
<td>20.0</td>
<td>68</td>
</tr>
<tr>
<td>5</td>
<td>5.9</td>
<td>5.3</td>
<td>1.78</td>
<td>1.85</td>
<td>9.48</td>
<td>9.21</td>
<td>15.5</td>
<td>19.5</td>
<td>68</td>
</tr>
<tr>
<td>6</td>
<td>5.84</td>
<td>5.12</td>
<td>1.87</td>
<td>1.93</td>
<td>9.45</td>
<td>9.16</td>
<td>19.0</td>
<td>23.5</td>
<td>71</td>
</tr>
<tr>
<td>7</td>
<td>6.25</td>
<td>6.1</td>
<td>1.82</td>
<td>1.88</td>
<td>9.56</td>
<td>9.22</td>
<td>20.0</td>
<td>22.0</td>
<td>72</td>
</tr>
<tr>
<td>8</td>
<td>7.02</td>
<td>6.8</td>
<td>1.58</td>
<td>1.7</td>
<td>9.72</td>
<td>9.5</td>
<td>18.0</td>
<td>21.5</td>
<td>74</td>
</tr>
<tr>
<td>9</td>
<td>6.03</td>
<td>5.9</td>
<td>1.87</td>
<td>1.94</td>
<td>9.42</td>
<td>9.21</td>
<td>19.5</td>
<td>22.0</td>
<td>75</td>
</tr>
<tr>
<td>10</td>
<td>6.31</td>
<td>6.1</td>
<td>1.92</td>
<td>2.0</td>
<td>9.34</td>
<td>8.9</td>
<td>16.5</td>
<td>21.5</td>
<td>73</td>
</tr>
<tr>
<td>11</td>
<td>6.28</td>
<td>5.9</td>
<td>1.98</td>
<td>2.04</td>
<td>9.44</td>
<td>9.2</td>
<td>19.0</td>
<td>22.5</td>
<td>72</td>
</tr>
<tr>
<td>12</td>
<td>6.22</td>
<td>5.99</td>
<td>2.0</td>
<td>2.1</td>
<td>9.47</td>
<td>9.15</td>
<td>18.5</td>
<td>22.0</td>
<td>70</td>
</tr>
<tr>
<td>13</td>
<td>5.22</td>
<td>5.1</td>
<td>1.89</td>
<td>1.94</td>
<td>9.37</td>
<td>9.2</td>
<td>15.5</td>
<td>19.5</td>
<td>69</td>
</tr>
<tr>
<td>14</td>
<td>6.12</td>
<td>5.8</td>
<td>2.05</td>
<td>2.07</td>
<td>9.35</td>
<td>9.1</td>
<td>16.0</td>
<td>21.5</td>
<td>72</td>
</tr>
<tr>
<td>15</td>
<td>5.4</td>
<td>5.1</td>
<td>2.01</td>
<td>2.04</td>
<td>9.46</td>
<td>9.21</td>
<td>16.5</td>
<td>19.0</td>
<td>78</td>
</tr>
<tr>
<td>16</td>
<td>6.39</td>
<td>6.09</td>
<td>1.98</td>
<td>2.01</td>
<td>9.22</td>
<td>8.9</td>
<td>18.5</td>
<td>22.0</td>
<td>68</td>
</tr>
<tr>
<td>17</td>
<td>6.03</td>
<td>5.82</td>
<td>1.96</td>
<td>1.72</td>
<td>9.55</td>
<td>9.31</td>
<td>17.0</td>
<td>20.5</td>
<td>73</td>
</tr>
<tr>
<td>18</td>
<td>5.94</td>
<td>5.67</td>
<td>1.89</td>
<td>2.07</td>
<td>9.09</td>
<td>8.9</td>
<td>15.5</td>
<td>18.5</td>
<td>72</td>
</tr>
<tr>
<td>19</td>
<td>6.55</td>
<td>6.1</td>
<td>1.82</td>
<td>1.87</td>
<td>9.19</td>
<td>9.31</td>
<td>16.5</td>
<td>19.0</td>
<td>70</td>
</tr>
<tr>
<td>20</td>
<td>6.01</td>
<td>5.87</td>
<td>1.74</td>
<td>1.79</td>
<td>9.41</td>
<td>9.222</td>
<td>18.5</td>
<td>21.5</td>
<td>73</td>
</tr>
</tbody>
</table>
APPENDICES – II

SCORE OF PHYSICAL AND PHYSIOLOGICAL VARIABLE OF WEIGHT TRAINING

<table>
<thead>
<tr>
<th>Sr. NO</th>
<th>Speed (50 M Dash)</th>
<th>Explosive Power (SBJ)</th>
<th>Agility (Shuttle Run)</th>
<th>Flexibility (Sit and Reach)</th>
<th>Resting Pulse Rate (DHRM)</th>
<th>Vital Capacity (DDS)</th>
<th>Blood Pressure (Systolic)</th>
<th>Blood Pressure (Diastolic)</th>
<th>CRE (Cooper Test)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre Test</td>
<td>Post Test</td>
<td>Pre Test</td>
<td>Post Test</td>
<td>Pre Test</td>
<td>Post Test</td>
<td>Pre Test</td>
<td>Post Test</td>
<td>Pre Test</td>
</tr>
<tr>
<td>1</td>
<td>5.8</td>
<td>5.66</td>
<td>1.92</td>
<td>2.08</td>
<td>9.47</td>
<td>9.37</td>
<td>14.5</td>
<td>18.0</td>
<td>72</td>
</tr>
<tr>
<td>2</td>
<td>6.45</td>
<td>5.1</td>
<td>1.98</td>
<td>2.14</td>
<td>9.25</td>
<td>9.2</td>
<td>16.0</td>
<td>21.0</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>7.11</td>
<td>6.45</td>
<td>2</td>
<td>2.11</td>
<td>9.35</td>
<td>9.18</td>
<td>18.0</td>
<td>21.5</td>
<td>69</td>
</tr>
<tr>
<td>4</td>
<td>6.48</td>
<td>6.12</td>
<td>1.89</td>
<td>1.94</td>
<td>9.46</td>
<td>9.32</td>
<td>16.5</td>
<td>19.0</td>
<td>73</td>
</tr>
<tr>
<td>5</td>
<td>6.11</td>
<td>6.09</td>
<td>2.05</td>
<td>2.12</td>
<td>9.22</td>
<td>8.95</td>
<td>19.0</td>
<td>21.0</td>
<td>78</td>
</tr>
<tr>
<td>6</td>
<td>5.87</td>
<td>5.73</td>
<td>2.01</td>
<td>2.09</td>
<td>9.55</td>
<td>9.31</td>
<td>20.0</td>
<td>22.5</td>
<td>79</td>
</tr>
<tr>
<td>7</td>
<td>6.43</td>
<td>5.79</td>
<td>1.98</td>
<td>2.15</td>
<td>9.19</td>
<td>8.98</td>
<td>18.0</td>
<td>20.5</td>
<td>68</td>
</tr>
<tr>
<td>8</td>
<td>5.7</td>
<td>5.48</td>
<td>2.02</td>
<td>2.16</td>
<td>9.75</td>
<td>9.54</td>
<td>16.0</td>
<td>20.0</td>
<td>73</td>
</tr>
<tr>
<td>9</td>
<td>5.8</td>
<td>5.71</td>
<td>1.95</td>
<td>2.02</td>
<td>9.41</td>
<td>9.34</td>
<td>17.0</td>
<td>19.5</td>
<td>71</td>
</tr>
<tr>
<td>10</td>
<td>5.52</td>
<td>5.51</td>
<td>1.82</td>
<td>1.97</td>
<td>9.64</td>
<td>9.6</td>
<td>18.0</td>
<td>19.5</td>
<td>73</td>
</tr>
<tr>
<td>11</td>
<td>7.1</td>
<td>6.8</td>
<td>1.68</td>
<td>1.76</td>
<td>9.41</td>
<td>9.35</td>
<td>16.5</td>
<td>20.0</td>
<td>73</td>
</tr>
<tr>
<td>12</td>
<td>6.82</td>
<td>6.75</td>
<td>1.88</td>
<td>1.97</td>
<td>9.34</td>
<td>9.19</td>
<td>16.0</td>
<td>18.5</td>
<td>71</td>
</tr>
<tr>
<td>13</td>
<td>5.91</td>
<td>5.88</td>
<td>1.81</td>
<td>1.94</td>
<td>9.5</td>
<td>9.34</td>
<td>17.0</td>
<td>20.0</td>
<td>70</td>
</tr>
<tr>
<td>14</td>
<td>6.13</td>
<td>6.09</td>
<td>1.86</td>
<td>1.95</td>
<td>9.41</td>
<td>9.32</td>
<td>16.5</td>
<td>18.5</td>
<td>68</td>
</tr>
<tr>
<td>15</td>
<td>5.6</td>
<td>5.4</td>
<td>1.8</td>
<td>2.01</td>
<td>9.45</td>
<td>9.22</td>
<td>18.0</td>
<td>19.5</td>
<td>72</td>
</tr>
<tr>
<td>16</td>
<td>5.29</td>
<td>5.33</td>
<td>1.85</td>
<td>1.94</td>
<td>9.56</td>
<td>9.3</td>
<td>19.0</td>
<td>21.0</td>
<td>67</td>
</tr>
<tr>
<td>17</td>
<td>6.03</td>
<td>6.01</td>
<td>1.78</td>
<td>1.85</td>
<td>9.55</td>
<td>9.46</td>
<td>17.0</td>
<td>18.0</td>
<td>69</td>
</tr>
<tr>
<td>18</td>
<td>5.24</td>
<td>5.18</td>
<td>1.87</td>
<td>2.1</td>
<td>9.42</td>
<td>9.29</td>
<td>16.0</td>
<td>18.5</td>
<td>75</td>
</tr>
<tr>
<td>19</td>
<td>6.45</td>
<td>6.16</td>
<td>1.82</td>
<td>1.94</td>
<td>9.34</td>
<td>8.9</td>
<td>18.5</td>
<td>21.0</td>
<td>77</td>
</tr>
<tr>
<td>20</td>
<td>6.1</td>
<td>6.05</td>
<td>1.62</td>
<td>1.84</td>
<td>9.41</td>
<td>9.2</td>
<td>17.0</td>
<td>21.0</td>
<td>71</td>
</tr>
</tbody>
</table>
APPENDICES – III

SCORE OF PHYSICAL AND PHYSIOLOGICAL VARIABLE OF CONTROL GROUP

<table>
<thead>
<tr>
<th>Sr. NO</th>
<th>Speed (50 M Dash)</th>
<th>Explosive Power (SBJ)</th>
<th>Agility (Shuttle Run)</th>
<th>Flexibility (Sit and Reach)</th>
<th>Resting Pulse Rate (DHRM)</th>
<th>Vital Capacity (DDS)</th>
<th>Blood Pressure (Systolic)</th>
<th>Blood Pressure (Diastolic)</th>
<th>CRE (Cooper Test)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre Test</td>
<td>Post Test</td>
<td>Pre Test</td>
<td>Post Test</td>
<td>Pre Test</td>
<td>Post Test</td>
<td>Pre Test</td>
<td>Post Test</td>
<td>Pre Test</td>
</tr>
<tr>
<td>1</td>
<td>6.32</td>
<td>6.3</td>
<td>1.87</td>
<td>1.88</td>
<td>9.31</td>
<td>9.28</td>
<td>19.5</td>
<td>21.0</td>
<td>73</td>
</tr>
<tr>
<td>2</td>
<td>6.23</td>
<td>5.9</td>
<td>1.82</td>
<td>1.83</td>
<td>9.26</td>
<td>9.24</td>
<td>17.5</td>
<td>18.0</td>
<td>73</td>
</tr>
<tr>
<td>3</td>
<td>6.71</td>
<td>6.62</td>
<td>1.58</td>
<td>1.57</td>
<td>9.4</td>
<td>9.35</td>
<td>19.0</td>
<td>19.5</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>6.89</td>
<td>6.31</td>
<td>1.87</td>
<td>1.87</td>
<td>9.47</td>
<td>9.42</td>
<td>20.0</td>
<td>20.5</td>
<td>78</td>
</tr>
<tr>
<td>5</td>
<td>5.95</td>
<td>5.9</td>
<td>1.92</td>
<td>1.93</td>
<td>9.49</td>
<td>9.48</td>
<td>17.0</td>
<td>18.0</td>
<td>78</td>
</tr>
<tr>
<td>6</td>
<td>5.94</td>
<td>5.81</td>
<td>1.98</td>
<td>1.99</td>
<td>9.72</td>
<td>9.71</td>
<td>16.5</td>
<td>17.0</td>
<td>71</td>
</tr>
<tr>
<td>7</td>
<td>6.23</td>
<td>6.19</td>
<td>2.0</td>
<td>2.02</td>
<td>9.29</td>
<td>9.24</td>
<td>17.5</td>
<td>17.5</td>
<td>68</td>
</tr>
<tr>
<td>8</td>
<td>5.81</td>
<td>5.74</td>
<td>1.89</td>
<td>1.89</td>
<td>9.28</td>
<td>9.25</td>
<td>16.0</td>
<td>16.5</td>
<td>67</td>
</tr>
<tr>
<td>9</td>
<td>6.01</td>
<td>5.88</td>
<td>2.05</td>
<td>2.04</td>
<td>9.31</td>
<td>9.26</td>
<td>18.0</td>
<td>18.0</td>
<td>76</td>
</tr>
<tr>
<td>10</td>
<td>6.12</td>
<td>5.98</td>
<td>2.01</td>
<td>2.02</td>
<td>9.6</td>
<td>9.57</td>
<td>17.0</td>
<td>17.5</td>
<td>75</td>
</tr>
<tr>
<td>11</td>
<td>6.44</td>
<td>6.44</td>
<td>1.98</td>
<td>1.99</td>
<td>9.41</td>
<td>9.37</td>
<td>16.0</td>
<td>16.5</td>
<td>68</td>
</tr>
<tr>
<td>12</td>
<td>6.74</td>
<td>6.7</td>
<td>1.96</td>
<td>1.94</td>
<td>9.31</td>
<td>9.26</td>
<td>18.5</td>
<td>15.0</td>
<td>73</td>
</tr>
<tr>
<td>13</td>
<td>5.67</td>
<td>5.65</td>
<td>1.91</td>
<td>1.92</td>
<td>9.34</td>
<td>9.31</td>
<td>18.0</td>
<td>18.5</td>
<td>70</td>
</tr>
<tr>
<td>14</td>
<td>7.0</td>
<td>7.02</td>
<td>1.82</td>
<td>1.83</td>
<td>9.39</td>
<td>9.32</td>
<td>19.0</td>
<td>21.5</td>
<td>69</td>
</tr>
<tr>
<td>15</td>
<td>5.52</td>
<td>5.42</td>
<td>1.74</td>
<td>1.75</td>
<td>9.54</td>
<td>9.51</td>
<td>17.5</td>
<td>18.0</td>
<td>73</td>
</tr>
<tr>
<td>16</td>
<td>5.21</td>
<td>5.27</td>
<td>1.81</td>
<td>1.82</td>
<td>9.62</td>
<td>9.58</td>
<td>16.0</td>
<td>16.5</td>
<td>78</td>
</tr>
<tr>
<td>17</td>
<td>5.94</td>
<td>5.91</td>
<td>1.85</td>
<td>1.87</td>
<td>9.37</td>
<td>9.34</td>
<td>19.0</td>
<td>17.0</td>
<td>68</td>
</tr>
<tr>
<td>18</td>
<td>5.81</td>
<td>5.77</td>
<td>1.8</td>
<td>1.8</td>
<td>9.42</td>
<td>9.39</td>
<td>16.5</td>
<td>17.5</td>
<td>67</td>
</tr>
<tr>
<td>19</td>
<td>6.1</td>
<td>6.09</td>
<td>1.85</td>
<td>1.86</td>
<td>9.55</td>
<td>9.53</td>
<td>18.0</td>
<td>21.5</td>
<td>72</td>
</tr>
<tr>
<td>20</td>
<td>5.5</td>
<td>6.92</td>
<td>1.78</td>
<td>1.79</td>
<td>9.34</td>
<td>9.31</td>
<td>14.0</td>
<td>15.0</td>
<td>70</td>
</tr>
</tbody>
</table>
APPENDICES – IV

RESEARCH PAPER,
PHOTOS
AND
SEMINAR CERTIFICATE

(Page No. 121 to 135)
INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS

International Peer Reviewed, Open Access Journal

ISSN: 2320-2882 | Impact Factor: 5.97 | ESTD Year: 2013

UGC and ISSN Approved Journals.

Website: www.ijcrt.org
EFFECT OF WEIGHT TRAINING AND CIRCUIT TRAINING ON EXPLOSIVE POWER OF COLLEGE MALE BASKETBALL PLAYERS

Amit D Patel
Research Scholar
S.G.S.U., Gandhinagar

Dr. Makarand S. Joshi
MSM College of Physical Education,
Aurangabad

Abstract:
The main objective of this study was to find out the Effect of Weight Training and Circuit Training on Explosive Power of college male basketball players. To achieve the purpose of the study, sixty male Basketball Players were randomly selected as subjects from Veer Narmad South Gujarat University Surat Affiliated College Students. The age of the subjects were ranged between 18 to 25 years. The study was formulated as pre and post-test random group design, in which sixty subjects were divided into three equal groups. Experimental Group-I (N=20; CT Group) performed the Circuit training Group. The Experimental Group-II (N=20, WT group) performed Weight Training program. Control group (N=20; CG) did not undergo any specific training programmed but there practiced the regular game. The analysis of covariance was used to analyze the significant difference, if any among the groups. Three groups were compared, whenever they obtained ‘F’ ratio for adjusted post-test was found to be significant, the Scheffe’s test to find out the paired mean differences, if any. The 0.05 level of confidence was fixed as the level of significance to test the ‘F’ ratio obtained by the analysis of covariance, which was considered as an appropriate. The result of the study indicates due to training on Explosive Power has been improved significantly.

Keywords: Weight Training; Circuit training, Explosive Power & ANACOVA.

Introduction:
The Weight Training has two primary functions in a workout program: instability and support. Instability during an exercise forces you to engage your core muscles to maintain your balance, making the exercise more difficult. Training the core with instability helps develop a strong support system for your legs and back, which prevents injuries and helps you get the most out of your exercise routine. The Training can also be used to support your back as you work on developing core stability. For instance, you can place the ball against the wall and lean your back against it as you do a squat. To add lower back support to an abdominal crunch, sit on the ball, walk your feet out in front of you until you are lying back on the ball with a neutral spine, and do crunches from there. Rutherford and Jones (1986) suggested that adaptations from Resistance training resulted in better coordination of synergistic and stabilizer muscles. Behm (2002) and colleagues reported the effect of unstable conditions, as induced by sitting on Swiss ball on force production of the knee extensors. Robert examined the effect of Swiss ball exercises on core stability and stated that there is an improvement in core strength among the subjects.

Objective of the Study:
The main objective of this study was to find out the purpose of the study will be to find out the effect of weight training and circuit training on Explosive Power of college male basketball players.

To analyses to compare the superiority between weight training and circuit training on male basketball
Effect of weight training on college male basketball players.
To prepare appropriate circuit training program at basketball players.

Methodology:
Selection of Subjects:
Sixty male Basketball players were selected from area of Affiliated colleges of Veer Narmad south Gujarat university, Surat who have represented at inter collegiate tournament Twice were randomly selected as subjects for the study. This experimental study was administered to only two experimental groups and one control group of 20 subjects each. The age of subjects ranged from 18 to 25 years only.

Experimental Design:
This experimental study was administered to only two experimental groups and one control group of 20 subjects each. For this purpose Group I underwent Circuit training, Group II underwent Weight training and Group III acted as control group.

EXPERIMENTAL GROUP - 1 –(Circuit Training Group)
The Exercises as Follows
Training Period is 6 Week, Duration In Between 20 To 25 Sec. Intensity – 60% To 90%, Rest Time 2 Min To 6 Min.

EXPERIMENTAL GROUP – 2 (Weight Training Group)

<table>
<thead>
<tr>
<th>TABLE - 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPUTATION OF ANALYSIS OF COVARIANCE OF PRE-TEST, POST-TEST AND ADJUSTED POST-TEST ON EXPLOSIVE POWER OF EXPERIMENTAL GROUP I, EXPERIMENTAL GROUP II AND CONTROL GROUP (Scores in Meters)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table No.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
</tr>
<tr>
<td>Pre Test Mean</td>
</tr>
<tr>
<td>Post Test Mean</td>
</tr>
<tr>
<td>Adjusted Post Test Mean</td>
</tr>
</tbody>
</table>

*Significance at .05 level of confidence
RESULTS OF EXPLOSIVE POWER

Table 1 shows the analysis data on explosive power. The pre-test means of Leg explosive powered were 1.87 for experimental groups I, 1.87 for experimental groups II and 1.87 for control group. The obtain “F” ratio of 0.31 was lesser than the table F-ratio 3.16. Hence the pre-test was not significant at 0.05 level of confidence for the degree of freedom 2 and 57.

The post test mean of explosive power were 1.90 for experimental group I, 1.93 for experimental group II, 1.87 for control group. The obtained “F” ratio of 28.74 was higher than the table F-ratio 3.16. Hence the post test was significant at 0.05 level of confidence for the degree of freedom 2 and 57.

The adjusted post –test mean of explosive power were 1.90 for experimental group I, 1.93 for experimental group II, 1.87 for control group. The obtained “F” ratio of 93.95 was higher than the table F-ratio 3.16. Hence the post –test was significant at 0.05 level of confidence for the degree of freedom 2 and 56.

Since, three groups were compared, whenever the obtain “F”-ratio for adjusted post test was found to be significant, the Scheffe’s test to find out the paired mean difference and it was presented in Table 1

TABLE 1.2
Ordered Scheffe’S Post Hocktest Mean Differences on Explosive Power Among Three Groups (Scores in Meters)

<table>
<thead>
<tr>
<th>Experimental Group I</th>
<th>Experimental Group II</th>
<th>Control Group</th>
<th>Mean Difference</th>
<th>Confidence Interval Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.90</td>
<td>1.93</td>
<td>-</td>
<td>0.03</td>
<td>0.006</td>
</tr>
<tr>
<td>1.90</td>
<td>-</td>
<td>1.87</td>
<td>0.06</td>
<td>0.006</td>
</tr>
<tr>
<td>-</td>
<td>1.93</td>
<td>1.87</td>
<td>0.03</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Table 1.2 shows the Scheffe’s post –hoc test result. The ordered adjusted final mean difference for explosive power of experimental groups I,II and control group were tested for significant at 0.05 level of confidence against confidential interval value.

The mean difference between experimental group I and experimental group II 0.03, experimental group I and control group 0.06, experimental group II and Control group 0.03 were respectively and it was seen to be greater than the confidential interval value of 0.006. Hence the above comparisons were significant.

The mean value of explosive power are shown graphically in 1.3
Explosive power

The experimental groups Circuit training and Weight training showed significant increase in the explosive power: 1.90 and 1.93 respectively from pre to post training.

The Weight Training group was found significantly better than (f < .05) the Circuit Training group and Control Group. Circuit Training group was better than the Control group in increasing the explosive power as measured by standing broad jump. Therefore weight training is better to improve the explosive power among the Basketball players.

Conclusion:

1. Weight training group produced a significant improvement in explosive Power better than the Circuit training group.

2. Explosive power was favored to weight training group greater than circuit training and control group of college male basketball players

References

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (ISSN: 2320-2882)
(IJCRT www.ijcrt.org)

Submit Your Manuscript/Papers

To

editor@ijcrt.org

Or

www.ijcrt.org
THE EFFECT OF RESISTANCE TRAINING AND CIRCUIT TRAINING ON VITAL CAPACITY AMONG COLLEGEREMALE BASKETBALL PLAYERS

Patel Amit D. Joshi Makarand S.

*Research Scholar, SGSU, Gandhinagar (G.J)-INDIA. **MSM, College of Physical Education, Aurangabad (M.S)-INDIA.

E. Mail: patelamit@gmail.com

Abstract:

The main objective of this study was to find out the Effect of Weight Training and Circuit Training on vital capacity of college male basketball players. To achieve the purpose of the study, sixty male Basketball Players were randomly selected as subjects from Veer Narmad South Gujarat University Surat Affiliated College Students. The age of the subjects were ranged between 18 to 25 years. The study was formulated as pre and post test random group design, in which sixty subjects were divided into three equal groups. Experimental Group-I (N=20, CT Group) performed the Circuit training Group. The Experimental Group-II (N=20, WT group) performed Weight Training program. Control group (N=20; CG) did not undergo any specific training programmed but there practiced the regular game. The analysis of covariance was used to analyze the significant difference, if any among the groups. Three groups were compared, whenever they obtained ‘F’ ratio for adjusted post test was found to be significant, the Schéffe’s test to find out the paired mean differences, if any. The 0.05 level of confidence was fixed as the level of significance to test the ‘F’ ratio obtained by the analysis of covariance, which was considered as an appropriate. The result of the study indicates due to training on vital capacity has been improved significantly.

Keywords: Weight Training; Circuit training, Vital Capacity & ANACOVA.

Introduction:

The Weight Training has two primary functions in a workout program: instability and support. Instability during an exercise forces you to engage your core muscles to maintain your balance, making the exercise more difficult. Training the core with instability helps develop a strong support system for your legs and back, which prevents injuries and helps you get the most out of your exercise routine. The Training can also be used to support your back as you work on developing core stability. For instance, you can place the ball against the wall and lean your back against it as you do a squat. To add lower back support to an abdominal crunch, sit on the ball, walk your feet out in front of you until you are lying back on the ball with a neutral spine, and do crunches from there. Rutherford and Jones (1986) suggested that adaptations from Resistance training resulted in better coordination of synergistic and stabilizer muscles. Behm (2002) and colleagues reported the effect of unstable conditions, as induced by sitting on Swiss ball on force production of the knee extenders. Robert examined the effect of Swiss ball exercises on core stability and stated that there is a improvement in core strength among the subjects.

Objective of the Study:

The main objective of this study was to find out the purpose of the study will be to find out the effect of weight training and circuit training on vital capacity of college male basketball players. To analyses to compare the superiority between weight training and circuit training on male basketball players. Effect of weight training on college male basketball players. To prepare appropriate circuit training program at basketball players.

Methodology:

Selection of Subjects: Sixty male Basketball players were selected from area of Affiliated colleges of Veer Narmad south Gujarat university, Surat who have represented at inter collegiate tournament Twice were randomly selected as subjects for the study. This experimental study was administered to only two experimental groups and one control group of 20 subjects each. The age of subjects ranged from 18 to 25 years only.

Experimental Design: This experimental study was administered to only two experimental groups and one control group of 20 subjects each. For this purpose Group I underwent Circuit training, Group II underwent Weight training and Group III acted as control group. Training in three alternative days for Six weeks.
Training Programs

Experimental group -1

Circuit Training – The Exercise as follows.
1- Patterstep 2- pivoting lateral clip 3- vertical jump 4- Zig Zag dribble 5- lay upshot with right hand 6. Lay up shot with centre side 7. Lay up shot with left hand 8. Vertical jump 9. Side to side Running 7- forward sprint
Training period is 6 week, Duration in between 20 to 45 sec, Intensity – 60% to 90%, Rest time -2 min to 6 min.

Experimental group -2

Weight training - 1 – Pac fly, 2 – Bench press, 3 - Ab Crunches, 4- Squat, 5 – Dynamic Lunges, 6- Leg Standing calf rise.

Statistical Analysis and Interpretations of the Data:

Table No: I

<table>
<thead>
<tr>
<th>Test</th>
<th>Ex Group I</th>
<th>Ex Group II</th>
<th>Control Group</th>
<th>Sources of Variance</th>
<th>Sum Of Square</th>
<th>df</th>
<th>Mean of Square</th>
<th>Obtain F ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre Test Mean</td>
<td>2.02</td>
<td>2.06</td>
<td>2.45</td>
<td>Between</td>
<td>3.4</td>
<td>2</td>
<td>1.70</td>
<td>2.26</td>
</tr>
<tr>
<td></td>
<td>0.04</td>
<td>0.06</td>
<td>0.04</td>
<td>within</td>
<td>28.2</td>
<td>42</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>Post Test Mean</td>
<td>2.26</td>
<td>2.94</td>
<td>2.44</td>
<td>Between</td>
<td>7.3</td>
<td>2</td>
<td>3.64</td>
<td>8.66*</td>
</tr>
<tr>
<td></td>
<td>0.04</td>
<td>0.05</td>
<td>0.05</td>
<td>within</td>
<td>36.6</td>
<td>42</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>Adjusted Post Test Mean</td>
<td>2.41</td>
<td>3.04</td>
<td>2.18</td>
<td>Between</td>
<td>11.5</td>
<td>2</td>
<td>5.75</td>
<td>45.76*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>within</td>
<td>10.8</td>
<td>41</td>
<td>0.13</td>
<td></td>
</tr>
</tbody>
</table>

*Significance at .05 level of confidence

(The table values required for significance at .05 level of confidence for 2 and 42 and 2 and 41 are 3.22 and 3.23 respectively).

Results of Vital Capacity:

Table no. I show the analysis data on Vital capacity. The pre-test means of Vital capacity were 2.02 for experimental groups I, 2.06 for experimental groups II, and 2.45 for control group. The obtain “F” ratio of 2.26 was lesser than the table F-ratio 3.22. Hence the pre-test was not significant at 0.05 level of confidence for the degree of freedom 2 and 42.

The post –test mean of Vital capacity were 2.26 for experimental group I, 2.94 for experimental group II, 2.44 for control group. The obtained “F” ratio of 8.66 was higher than the table F-ratio 3.22. Hence the post-test was significant at 0.05 level of confidence for the degree of freedom 2 and 42.

The adjusted post –test mean of Vital capacity were 2.41 for experimental group I, 3.04 for experimental group II, 2.18 for control group. The obtained “F” ratio of 45.76 was higher than the table F-ratio 3.23. Hence the post –test was significant at 0.05 level of confidence for the degree of freedom 2 and 41.

Since, three groups were compared, whenever the obtain “F”-ratio for adjusted post test was found to be significant ,the Scheffé’s test to find out the paired mean difference and it was presented in Table VI (a).

Table No: II

Ordered Scheffe’s Post Hock test Mean Differences
On Vital Capacity among Three Groups
(Scores in lit.min⁻¹)

<table>
<thead>
<tr>
<th>Experimental Group I</th>
<th>Experimental Group II</th>
<th>Control Group</th>
<th>Mean Difference</th>
<th>Confidence Interval Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.41</td>
<td>3.04</td>
<td>-</td>
<td>0.63</td>
<td>0.23</td>
</tr>
<tr>
<td>2.41</td>
<td>-</td>
<td>2.18</td>
<td>0.24*</td>
<td>0.23</td>
</tr>
<tr>
<td>-</td>
<td>3.04</td>
<td>2.18</td>
<td>0.87</td>
<td>0.23</td>
</tr>
</tbody>
</table>

*Significance at .05 level of confidence.

‘Curiosity is the best Quality of a Good Researcher’
Table 1.6.1 shows the Scheffe’s post-hoc test result. The ordered adjusted final mean difference for Vital capacity of experimental groups I, II and control group were tested for significant at 0.05 level of confidence against confidential interval value.

The mean difference between experimental group I and experimental group II 0.63, experimental group I and control group 0.24, experimental group II and Control group were 0.87 respectively and it was seen to be greater than the confidential interval value of 0.23 Hence the above comparisons were significant.

The mean value of Vital capacity are shown graphically: I

Vital Capacity:

The experimental groups Circuit training and Weight training showed significant increase in the vital capacity: 2.41 and 3.04 respectively from pre to post training. The Circuit Training group was found significantly better than (f<.05) the Weight Training group and Control Group .Weight Training group was better than the Control group in increasing the vital capacity rate as measured by Digital Dry Spirometer therefore circuit training is more better to improve vital capacity among the basketball players.

Conclusion:

The Weight training and Circuit training has produced significant improvement on performance variables Vital Capacity greater than control group of college male Basketball players.

Vital capacity was favoured to Circuit training greater than Weight training and control group of college male Basketball players.

References:

Participation Certificate

Certified that Prof. Amit D. Patel of Research Scholar, SGSU, Gandhinagar Participated in the National Seminar organized by Gujarat State Universities & Colleges Physical Education Teachers’ Association & M. K. College of Commerce, Bharuch, during April 1st and 2nd 2016. He / She also Presented a Paper entitled The Effect Of Resistance Training And Circuit Training On Selected Physical And Physiological Variables Among College Male Basketball Players

Prof. Manubhai B. Bharwad
Chair Person

Dr. V. K. Joshi
Convenor

Dr. N. J. Chaniyara
Organising Secretary
Sarjan - A Platform of Creation
Kantha Vibhag Navnirman Mandal
D. C. Patel Navnirman Educational Campus

D. R. Patel & R. B. Patel Commerce College And Bhaniben C. Patel B.B.A. College
Dist. Bharuch (V.S.), Savli - 399017, Gujarat, Affiliated to Veer Narmad South Gujarat University
Organized
One Day National Level Seminar
Under
Internal Quality Assurance Cell (IQAC)
On
A Global Perspective of Physical Education and Sports

Certificate

This is to certify that Amit Patel of Swarnim Gujarat Sports University, Gandhinagar, has actively participated as a Research Scholar in One Day National Level Seminar in the Subject of Physical Education organized on 4th March, 2018. He has presented a paper on Effect Of Weight Training And Circuit Training On Selected Physical And Physiological Variable Of College Basketball Players, under the subject theme of A Global Perspective of Physical Education and Sports.

Dr. Ashish K. Desai
Co-ordinator

Dr. Jagmohan J. Desai
Principal

Shri Suvibhai N. Patel
President

Scanned with CamScanner
1st World Economic and Sports Conference 2016
7th and 8th October, 2016
Venue: LUBA Auditorium, Vadodara, Gujarat, India
Jointly Organised by
Global Economist Forum
Global Sports Federation
and
The Maharastra Sayaji Rao University of Baroda, Vadodara, Gujarat, India

Certificate of Participation

This is to certify that Dr. / Mrs. / Ms. [Name], has attended the World Economic and Sports Conference 2016 in Economics / Sports jointly conducted by Department of Business Economics, Faculty of Commerce and Department of Physical Education.

Har she has also presented a paper titled
"Effect of Weight Training and Circuit Training On Selected Physical and Physiological Variables of College Basketball Players"

[Signatures]
Dr. Enayat Karim
President
Global Economist Forum

Dr. Dinkar Nayak
Conference Director
WeSC-2016

Dr. M. R. Pankhade
Conference Director
WeSC-2016

Scanned with CamScanner
BIBLIOGRAPHY

BOOKS

JOURNALS

C. Meylan and D Malatesta. (2009), Effects of in-season plyometric training within soccer practice on explosive actions of young players, 23(9): 2605-26013.

Elaine C Lee et al. (July, 2009), Effect of an acute bout of plyometric exercise on neuromuscular fatigue and recovery in recreational athletes, *Journal of strength and conditioning research*, 23(4): 1181-1186.

Halder K et al. (2016), Physical and Physiological Comparison between Indian Female College Basketball Players and Sedentary Students, Advances in Applied Physiology, 1(2): 18-23.

Klika Brett; et al. (2013), High-Intensity Circuit Training Using Body Weight: Maximum Results With Minimal Investment, ACSM's Health & Fitness Journal.

Maroc, Dona Jean (1967), The Effect of Two Programs of Circuit Training on the Physical Fitness of College Women, Completed Research in Health, Physical Education and Recreation, 8: -118.

Ratmess N., Kraemer WJ. (May, 2007), The effects of ten weeks of resistance and combined plyometric sprint training with meridian elite athletic shoe on muscular performance in women, *Journal of strength and conditioning research*, 543-49.

Saundrs et.al, (2008), Short-term plyometric training improves running economy in highly trained middle and long distance runners, *Journal of strength condition research*, 22: 75-78.

Thomas K,French D,Hayes PR (September, 2009), Compare the effect of two plyometric training techniques on muscular power and agility in youth soccer players, *Journal of Medical Science and Sports Exercise*, 37.

PUBLISHED Ph.D THESIS

S. Somasundaramoorthy, “Effects of specific pre season training package on selected physical physiological and skill performance variables of college level male basketball players”, Published Ph.D Thesis in Bharathiar University, http://shodhganga.inflibnet.ac.in/handle/10603/103019.

WEBSITE

http://en.wikipedia.org/wiki/Weight_Training
ACKNOWLEDGMENT

First and foremost I would thanks God for helping me to fulfill my dream throughout the time.

I am very thankful to the Vice Chancellor, Registrar and Experts of Research Development Committee (RDC) of Swarnim Gujarat Sports University, Gandhinagar for the permission to work on this research and for the valuable impetus and facilities made available to him for carrying out this study successfully.

It gives me great pleasure to acknowledge a deep sense of gratitude to my research supervisor, Dr. Makarand S. Joshi, Assistant professor, MSM College of Physical Education, Aurangabad, Maharashtra. Without whom the research could never have been completed. He showed me different ways to approach the research problem and the need to be persistent to accomplish any goal. He provided me valuable guidance and his in depth knowledge of the subject lead me to insight of the topic. This is a great opportunity to express my respect for the supports which he has provided to me and the confidence which he has responded in me for carrying out this study.

I also extend my sincere thanks to Research Development Committee (RDC) of Swarnim Gujarat Sports University, Gandhinagar for his valuable help in selecting a research problem as well as for timely assistance and suggestion throughout the study.

I also take opportunity to thanks Dr. Sudhir kumar Sharma, Assistant Professor, Swarnim Gujarat Sports University, Gandhinagar who have guided me in my course work study. Moreover, I cannot refrain from thanking Mr. Rajesh Bhalawala, Basketball Coach, V.N.S.G.U, Surat, Dr. Rakesh Bharti, Professor, NMIMS, Shirpur, and Dr. Om Prakash Mishra, Assistant Professor, Swarnim Gujarat Sports University, Gandhinagar, Dr. Nisith Dutta, Director of physical education department, SVNIT,Surat, Prof. Chirag Vaghela Assistant Professor, SVNIT, Surat, Dr. Rajal B. Sukhiyaji, Dr. Zeel R. Patel and Dr. Shanaya P. Billimoria, Assistant Professor, Shrimad Rajchandra college of Physiotherapy, Uka Tarasadia University, Bardoli and Dr. Jignesh J. Tandel, Assistant Professor, Sir K.P College of Commerce, Surat and Prof. Rina A. Chauhan, I/C principal Evening
Commerce College, Surat, **Late Prof. Hardik K. Desai**, Assistant Professor, Evening Commerce College, Surat **Dr. Darshan M. Thakor**, Assistant Professor, Evening Commerce College, Surat for their support during the research.

I would also take opportunity to have sincere thanks to the management, principal, administrative staff, sports students and my colleagues of the Evening Commerce College, Surat for their support during the research.

I am deeply thankful to all the players of affiliated colleges of Veer Narmad South Gujarat University, Surat who got involved in this research as a subject.

Last, but not the least, specific mention must be made to my father **Shree Dhansukhbhai D. Bhandari** & My mother, **Smt. Manuben D. Bhandari** who gave me constant and ever ending inspiration and moral support. My wife, **Vaishali** who not only inspired and assisted me but also took over my share of domestic chores to enable me to complete my study. I am indebted to my Daughter, **Queen** whom I must devote my precious time but they managed and understood me to pursue my study. Lastly, I would thank each and every one who has helped me in my study, throughout the period.

Amit D. Patel
DECLARATION

I declare that the research work incorporated in the present thesis entitled “Effect of weight training and circuit training on selected physical and physiological variable of college basketball players” is a record of independent work carried out by me under the supervision and guidance of Dr. Makarand S. Joshi. This work has not been submitted to any other University / Institution for the degree of Doctor of Philosophy in Physical Education. I have properly acknowledged the material collected from secondary sources wherever required. I solely own the responsibility for the originality of the entire content.

Date: [Signature of Research Scholar]

Name: Amitkumar Dhansukhbhai Patel

Enrollment No: 0010537
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Content</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Description of Circuit Training</td>
<td>79</td>
</tr>
<tr>
<td>4.1</td>
<td>The Mean Value of Speed</td>
<td>86</td>
</tr>
<tr>
<td>4.2</td>
<td>The Mean Value of Explosive Power</td>
<td>89</td>
</tr>
<tr>
<td>4.3</td>
<td>The Mean Value of Agility</td>
<td>92</td>
</tr>
<tr>
<td>4.4</td>
<td>The Mean Value of Flexibility</td>
<td>95</td>
</tr>
<tr>
<td>4.5</td>
<td>The Mean Value of Resting Pulse Rate</td>
<td>98</td>
</tr>
<tr>
<td>4.6</td>
<td>The Mean Value of Vital Capacity</td>
<td>101</td>
</tr>
<tr>
<td>4.7</td>
<td>The Mean Value of Systolic Blood Pressure</td>
<td>104</td>
</tr>
<tr>
<td>4.8</td>
<td>The Mean Value of Diastolic Blood Pressure</td>
<td>107</td>
</tr>
<tr>
<td>4.9</td>
<td>The Mean Value of Cardio Respiratory Endurance</td>
<td>110</td>
</tr>
</tbody>
</table>