TABLE OF CONTENTS

Declaration	-i-
Statement	-ii-
Ph.D. Course Work Award Sheet	-iii-
Acknowledgement	iv – v
List of figures	ix – xvi
List of tables	xvii - xviii
Abbreviations	-xix-

Chapter 1 An Introduction 1 – 24

1.1. Heavy metals in health and ecology 2 – 6
1.2. Sequestration of heavy metals from the environment 6 – 24
 1.2.1. Heavy metal removal using biological matter 9 – 11
 1.2.2. Microbes in biosorption 12 – 14
 1.2.3. Cyanobacteria in the environment and in research 14 – 22
 1.2.4. Cyanobacteria in heavy metal biosorption 22 – 24
1.3. Objectives 24

Chapter 2 Materials and Methods 25 – 45

2.1. Chemicals and Glasswares 25 – 26
 2.1.1. Preparation of stock metal solutions 26
2.2. Collection, Isolation and purification of cyanobacteria 26 – 28
 2.2.1. Selection of organism for study 27
 2.2.2. Molecular Identification of the chosen cyanobacterial strains 27 – 28
2.3. Metal removal studies 28 – 37
 2.3.2. FTIR spectroscopic analysis 29
 2.3.3. Analysis of water samples 29
 2.3.4. Metal estimation for biosorption studies 30 – 32
 2.3.5. Optimization of experimental conditions 32 – 33
 2.3.5.1. pH and temperature 32
 2.3.5.2. Initial inoculum size and age 32
 2.3.5.3. Shaking rate 33
 2.3.6. Influence of initial metal concentration on biosorption 33
 2.3.7. Influence of contact time on metal biosorption 33
<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>Collection, Isolation, Purification and Identification of Cyanobacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Collection of water samples</td>
</tr>
<tr>
<td>3.2</td>
<td>Analysis of water samples</td>
</tr>
<tr>
<td>3.3</td>
<td>Isolation and purification of cyanobacteria from the collection</td>
</tr>
<tr>
<td>3.4</td>
<td>Screening of cyanobacterial isolates for the study</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Screening based on growth and metal tolerance</td>
</tr>
<tr>
<td>3.5</td>
<td>Identification of selected cyanobacteria</td>
</tr>
<tr>
<td>3.6</td>
<td>Summary</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 4</th>
<th>Zinc sequestration by Nostoc muscorum Meg1</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Studies to assess the Zn removal potential of Nostoc muscorum Meg1</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Assessment of Zn ions binding to Nostoc muscorum Meg1</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Analysis of Zn binding functional groups on Nostoc muscorum Meg1 using FTIR spectroscopy</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Zn sequestration and its distribution in the Nostoc muscorum Meg1 cells</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Optimization of conditions for Zn removal by Nostoc muscorum Meg1</td>
</tr>
<tr>
<td>4.1.4.1</td>
<td>Influence of temperature and pH</td>
</tr>
<tr>
<td>4.1.4.2</td>
<td>Impact of initial inoculum age, inoculum size and shaking rate on Zn removal</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Influence of initial Zn concentration and contact time on removal</td>
</tr>
<tr>
<td>4.1.6</td>
<td>Influence of competing ion on Zn sorption: Presence of Ca</td>
</tr>
</tbody>
</table>
Studies on sequestration of heavy metal ions by selected free-living cyanobacteria

by

Omega Lasienhun Diengdoh

TABLE OF CONTENTS

4.1.7 Evaluation of thermodynamic parameters for Zn removal by Nostoc muscorum Meg1 76 – 77
4.1.8 Isotherm modeling of Zn sorption by Nostoc muscorum Meg1 77 – 79
4.2 Morphological and ultrastructural studies of Zn treated Nostoc muscorum Meg1 79 – 83
4.2.1 Scanning Electron Microscopy for the analysis of surface morphology of Zn treated Nostoc muscorum Meg1 80 – 81
4.2.2 Transmission Electron Microscopy for ultrastructural analysis of Zn treated Nostoc muscorum Meg1 82 – 83
4.3 Assessment of the effects of Zn on biochemical aspects of Nostoc muscorum Meg1 84 – 92
4.3.1 Effects of Zn treatment on carbon fixation and assimilation: photosynthetic pigments, rates of photosynthetic and respiratory ETC activities and carbohydrate content 85 – 88
4.3.2 Effects of Zn treatment on nitrogen fixation and assimilation: heterocyst frequency, nitrogenase activity, glutamine synthetase (GS) activity and total protein content 89 – 91
4.3.3 Proline synthesis by Nostoc muscorum Meg1 in response to Zn stress 91 – 92
4.4 Discussion 93 – 102
4.5 Summary 102 – 103

Chapter 5 Zn sequestration by Anabaena variabilis MEGCH1 104 - 133
5.1 Studies to assess the Zn removal potential of Anabaena variabilis MEGCH1 105 – 119
5.1.1 Assessment of Zn ions binding to Anabaena variabilis MEGCH1 106 – 107
5.1.2 Functional group analysis for Anabaena variabilis MEGCH1 107 – 108
5.1.3 Zn sequestration and its distribution in Anabaena variabilis MEGCH1 108 – 109
5.1.4 Optimization of conditions for Zn removal by Anabaena variabilis MEGCH1 110 – 113
5.1.4.1 Temperature and pH for optimum Zn removal 110 – 111
5.1.4.2 Inoculum age, inoculum size and shaking rate for optimum Zn removal 111 – 113
5.1.5 Influence of initial Zn concentration and contact time on removal 113 – 114
5.1.6 Influence of Ca on Zn sorption by Anabaena variabilis MEGCH1 114 – 116
5.1.7 Thermodynamic parameters for Zn removal by \textit{Anabaena variabilis} MEGCH1
5.1.8 Isotherm modeling of Zn sorption by \textit{Anabaena variabilis} MEGCH1

5.2 Morphological and ultrastructural studies of Zn treated \textit{Anabaena variabilis} MEGCH1
5.2.1 Scanning Electron Microscopy for analysis of surface morphology of Zn treated \textit{Anabaena variabilis} MEGCH1
5.2.2 Transmission Electron Microscopy for ultrastructural studies of Zn treated \textit{Anabaena variabilis} MEGCH1

5.3 Assessment of the effects of Zn on biochemical aspects of \textit{Anabaena variabilis} MEGCH1 biomass
5.3.1 Effects of Zn treatment on carbon fixation and assimilation: photosynthetic pigments, rates of photosynthetic and respiratory ETC activities and carbohydrate content
5.3.2 Effects of Zn treatment on N\textsubscript{2} fixation and assimilation: heterocyst frequency, nitrogenase activity, glutamine synthetase (GS) activity and total protein content
5.3.3 Proline synthesis by \textit{Anabaena variabilis} MEGCH1 in response to Zn stress

5.4 Discussion
5.5 Summary

Chapter 6 \textbf{Copper sequestration by Anabaena variabilis MEGCH1}
6.1 Studies to assess the Cu removal potential of \textit{Anabaena variabilis} MEGCH1
6.1.1 Assessment of Cu ions binding to \textit{Anabaena variabilis} MEGCH1
6.1.2 Functional group analysis
6.1.3 Cu sequestration and its distribution in \textit{Anabaena variabilis} MEGCH1
6.1.4 Optimization of conditions for Cu removal by \textit{Anabaena variabilis} MEGCH1
6.1.4.1 Temperature and pH for Cu removal
6.1.5 Influence of initial Cu concentration and contact time on removal
6.1.6 Cu removal by \textit{Anabaena variabilis} MEGCH1 in presence of Cu
6.1.7 Thermodynamic parameters for Cu removal by \textit{Anabaena variabilis} MEGCH1
6.1.8 Isotherm modeling of Cu sorption by \textit{Anabaena variabilis} MEGCH1

116 - 117
117 – 119
119 – 122
119 – 120
121 – 122
122 – 128
124 – 126
126 – 127
127 – 128
129 – 132
132 – 133
135 – 146
136 – 137
137 – 138
138 – 139
140 – 141
140 – 141
141 – 142
142 – 143
143 – 145
145 – 146
6.2 Morphological and ultrastructural studies of Cu treated *Anabaena variabilis* MEGCH1
- **6.2.1** Scanning Electron Microscopy for analysis of surface morphology of Cu treated *Anabaena variabilis* MEGCH1
- **6.2.2** Transmission Electron Microscopy for ultrastructural studies of Cu treated *Anabaena variabilis* MEGCH1

6.3 Assessment of the effects of Cu on biochemical aspects of *Anabaena variabilis* MEGCH1
- **6.3.1** Effects of Cu treatment on carbon fixation and assimilation: photosynthetic pigments, rates of photosynthetic and respiratory ETC activities and carbohydrate content
- **6.3.2** Effects of Cu treatment on N₂ fixation and assimilation: heterocyst frequency, nitrogenase activity, glutamine synthetase (GS) activity and total protein content
- **6.3.3** Proline synthesis by *Anabaena variabilis* MEGCH1 in response to Cu stress

6.4 Discussion

6.5 Summary

Chapter 7 Conclusion

References

Publications

Curriculum Vitae