Identification of stable radiation response genes and the corresponding proteins in human blood lymphocytes

TABLE OF CONTENTS

ACKNOWLEDGEMENT - i-iii
LIST OF FIGURES - vii xii
LIST OF TABLES - xiii
ABBREVIATIONS - xiv-xx

1. INTRODUCTION - 1-50
 1.1. Genome integrity - 1-4
 1.2. Radiation - 4-13
 1.2.1. Biochemical events following Ionizing Radiation (IR) - 7-10
 1.2.2. Deterministic and Stochastic effects of Ionizing Radiation - 10-11
 1.2.3. Biological effects of Ionizing Radiation - 11-13
 1.3. Biodosimetry - 13-21
 1.4. Cyclin-dependent kinase inhibitor 1 A (CDKN1A) - 21-24
 1.5. Cysteine-Cysteine motif chemokine receptor type 6 (CCR6) - 24-26
 1.6. ADP-ribose polymer adduct (ARPA) - 26-48
 1.6.1. ADP-Ribosylation - 26-27
 1.6.2. Enzymes involved in PAR metabolism - 27-30
 1.6.3. PAR and Cellular processes - 31-48
 1.6.3.1. PAR in repair of DNA damage - 31-34
 1.6.3.2. PAR in chromatin remodelling and gene expression - 34-36
 1.6.3.3. PAR in apoptosis - 36-37
 1.6.3.4. PAR in ageing - 37-39
 1.6.3.5. PAR in cell cycle regulation - 39-41
 1.6.3.6. PAR in cell proliferation and differentiation - 41-42
 1.6.3.7. PAR in carcinogenesis - 42-45
 1.6.3.8. Cancer therapy - 45-48
 1.7. Aims and objectives - 48-50
Identification of stable radiation response genes and the corresponding proteins in human blood lymphocytes

by Mandahakani Ksoo

2. MATERIALS AND METHODS

2.1. Chemicals

2.1.1. General chemicals

2.1.2. Water

2.1.3. Kits and primers

2.1.4. Membranes and antibodies

2.1.5. Miscellaneous

2.2. Instruments and apparatus

2.3. Buffers

2.3.1. Phosphate buffered saline (PBS), pH 7.4

2.3.2. Phosphate buffered saline-Tween-20 (PBST) solution

2.3.3. Tris-glycine buffer (0.1 M), pH 10.2

2.3.4. Tris-barbiturate buffer (0.03 M), pH 7.2 containing 6 M urea and 0.1 % SDS

2.3.5. Equilibrium buffer

2.3.6. Dialysis buffer, pH 8

2.3.7. Cell lysis buffer, pH 8

2.3.8. Tris-buffer saline, pH 7.5

2.3.9. Tween-20-tris buffered saline (TTBS) solution

2.3.10. Tris-Cl (250 mM), pH 9

2.3.11. Stripping buffer

2.4. Experimental systems

2.5. Collection of human blood samples

2.6. Isolation of ribonucleic acid (RNA)

2.7. cDNA synthesis

2.8. Real time quantitative Polymerase Chain Reaction (qPCR)

2.9. Summary of RNA isolation, cDNA synthesis and qPCR

2.10. Isolation of ADP-ribose polymers

2.11. Raising polyclonal antibodies against poly (ADP) ribose

2.12. Preparation of polyclonal antibody
Identification of stable radiation response genes and the corresponding proteins in human blood lymphocytes

Table of Contents

- vi

2.13. Specificity of polyclonal antibodies - 71-73
2.14. Isolation of human peripheral blood lymphocytes (hPBL) - 73-75
2.15. Experimental preparation - 75
2.16. Cell counting - 76
2.17. Preparation of cell lysate of hPBL - 76-77
2.18. Quantification of protein - 77-79
2.19. Quantification of DNA - 79-80
2.20. Quantification of RNA - 80-81
2.21. Western/Slot blotting of protein samples - 81-82
2.22. Indian ink staining of slot blot - 82-84
2.23. Immunoprobing of Western/Slot blot - 84-87

3. RESULTS - 88-119
3.1. Selection of candidate early RRGs for the study - 88-89
3.2. Validation of selected 5 early RRGs by real time quantitative polymerase chain reaction (qPCR) and identification of candidate stable RRG(s) - 89-94
3.3. Validation of candidate RRPs by Western/Slot blot immunoprobing of proteins and their stabilities - 94-119
 3.3.1. Western/Slot blot loading control: total hPBL proteins using Indian ink - 95
 3.3.2. Immunoprobe assay of loading control in hPBL lysate: GAPDH protein - 96
 3.3.3. Immunoprobe assay of CDKN1A in hPBL lysate - 98-104
 3.3.4. Immunoprobe assay of CCR6 in hPBL lysate - 105-111
 3.3.5. Immunoprobe assay of ARPA in hPBL lysate - 112-119

4. DISCUSSION - 120-137

5. REFERENCES - 138-185
PUBLICATIONS - 186-208
ANNEXURE I - xxi
ANNEXURE II - xxii
ANNEXURE III - xxiii-xxviii
CURRICULUM VITAE - xxix-xxx