Table of Contents

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>BONAFIDE CERTIFICATE</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xxi</td>
</tr>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Prelude</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Heavy metal pollution</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Sources of heavy metal</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>Sources of lead</td>
<td>11</td>
</tr>
<tr>
<td>1.4.1</td>
<td>General Properties of lead (Pb)</td>
<td>12</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Health Problems due to over exposure of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>14</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Importance of lead</td>
<td>15</td>
</tr>
<tr>
<td>1.4.4</td>
<td>Importance of heavy metals</td>
<td>15</td>
</tr>
<tr>
<td>1.5</td>
<td>Limitations of conventional methods used to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>treat wastewater containing heavy metals</td>
<td>18</td>
</tr>
</tbody>
</table>
1.6 Adsorption
 1.6.1 Factors affect the adsorption
 1.6.2 Characteristics of adsorbents
1.7 Bioadsorbents
1.8 Objectives of the research
1.9 Scope of research studies

2 REVIEW OF LITERATURE
 2.1 Overview
 2.2 Research gap
 2.3 Preparation of adsorbents
 2.4 Waste Water treatment
 2.5 Conventional methods of heavy metal removal from industrial waste water
 2.5.1 Chemical Precipitation
 2.5.2 Electro dialysis
 2.5.3 Chemical Reduction
 2.5.4 Xanthate Process
 2.5.5 Solvent Extraction
 2.5.6 Coagulation/Flocculation
 2.5.7 Cementation
 2.5.8 Ultra filtration
 2.5.9 Reverse Osmosis
 2.6 Heavy metals as adsorbates
 2.7 Different separation techniques for removal of heavy metals
 2.8 Biosorption Mechanisms
 2.9 Optimization of process parameters
 2.10 Review of adsorption isotherm and kinetics
 2.11 Summary
3 REMOVAL OF LEAD FROM SYNTHETIC SOLUTIONS USING BANANA BUNCH AS BIOADSORBENT

3.1 Introduction 64

3.2 Materials and methods 65
 3.2.1 Preparation of bioadsorbent 67
 3.2.2 Preparation of stock solution 67
 3.2.3 Preparation of working solution 68
 3.2.4 Characterization of bioadsorbent 68

3.3 Batch adsorption experiment 69

3.4 Optimization of sorption method parameters 70
 3.4.1 Effect of bioadsorbent particle size on the removal of Pb (II) 70
 3.4.2 Effect of Initial concentration on the removal of Pb (II) using Banana bunch 70
 3.4.3 Effect of bioadsorbent dose on the removal of Pb (II) using Banana bunch 71
 3.4.4 Effect of contact time on the removal of Pb (II) using Banana bunch 71
 3.4.5 Effect of Agitation on the removal of Pb (II) using Banana bunch 72
 3.4.6 Effect of pH on the removal of Pb (II) using Banana bunch 72

3.5 Equilibrium isotherm model for the biosorption of lead 73
 3.5.1 Bioadsorption Isotherms Models 73
 3.5.2 Bioadsorption Kinetics Studies 74

3.6 Results and Discussion 75
 3.6.1 SEM Micrographs of Banana Bunch 75
3.6.2 FTIR Analysis of Banana Bunch
3.7 Biosorption isotherm studies and kinetics
3.8 Discussion

4 REMOVAL OF LEAD FROM SYNTHETIC SOLUTIONS USING TEA WASTE AS BIOADSORBENT

4.1 Introduction
4.2 Materials and methods
 4.3 Flow chart for removal of lead using tea Waste
 4.3.1 Preparation of tea waste as Bioadsorbent
 4.3.2 Preparation of Stock solution
 4.3.3 Preparation of working solution
 4.3.4 Characterization of Tea waste
 4.4 Optimization of adsorption process parameters
 4.4.1 Effect of particle size on the removal of Pb (II) using Tea Waste
 4.4.2 Effect of initial concentration on the removal of Pb (II) using Tea Waste
 4.4.3 Effect of dosage on the removal of Pb (II) using Tea Waste
 4.4.4 Effect of contact time on the removal of Pb (II) using Tea Waste
 4.4.5 Effect of agitation on the removal of Pb (II) using Tea Waste
 4.4.6 Effect of effect of pH on the removal of Pb (II) using Tea Waste
 4.5 Equilibrium Isotherm model for biosorption of Lead(II)
4.5.1 Adsorption isotherm studies 106
4.5.2 Biosorption Kinetics studies 108
4.6 Results and Discussion 109
 4.6.1 Physical and Chemical characteristics 109
4.7 Batch experimental procedure 114
4.8 Optimization of various adsorption process
 Parameters 115
 4.8.1 Effect of particle size on the removal of Pb (II) 115
 4.8.2 Effect of concentration on the removal of Pb (II)
 using Tea waste 116
 4.8.3 Effect of dosage on the removal of Pb (II)
 using Tea waste 118
 4.8.4 Effect of contact time on the removal of Pb (II)
 using Tea waste 119
 4.8.5 Effect of Agitation on the removal of Pb (II)
 using Tea waste 120
 4.8.6 Effect of pH on the removal of Pb (II) using
 Tea waste 121
4.9 Analysis of tea waste adsorption isotherm model 123
 4.9.1 Adsorption Isotherm analysis 123
 4.9.2 Kinetic analysis 126
4.10 Discussion 128

5 REMOVAL OF LEAD FROM SYNTHETIC
SOLUTIONS USING MAIZE COB AS
BIOADSORBENT 130
 5.1 Introduction 130
 5.2 Materials and methods 132
 5.3 Flow chart for preparation of maize cob 132
 5.3.1 Preparation of maize cob as bio adsorbent 134
5.3.2 Stock solution Preparation 134
5.3.3 Working Solution preparation 134
5.4 Characterization of bioadsorbents 134
5.4.1 Atomic absorption Spectrophotometer 134
5.4.2 SEM (Scanning Electron Microscope) 135
5.4. 3 FTIR (Fourier Transform Infrared Spectroscopy) Analysis 135
5.5 Batch adsorption experiment 135
5.6 Optimization of adsorption process parameters 136
5.6.1 Effect of particle size on the removal of Pb (II) using Maize cob 136
5.6.2 Effect of concentration on the removal of Pb (II) using Maize cob 136
5.6.3 Effect of dose on the removal of Pb (II) using Maize cob 137
5.6.4 Effect of contact time on the removal of Pb(II) using Maize cob 137
5.6.5 Effect of Agitation on the removal of Pb (II) using maize cob 138
5.6.6 Effect of pH on the removal of Pb (II) using Maize cob 138
5.7 Equilibrium isotherm model for the biosorption of Lead (II) 138
5.7.1 Adsorption isotherms 138
5.7.2 Order of Kinetics studies 140
5.8 Result and Discussion 140
5.8.1 SEM Micrographs of Maize Cob 140
5.8.2 FTIR analysis of Maize Cob 141
5.9 Adsorption process different parameters for the removal of lead ion using maize cob

5.9.1 Effect of Bioadsorbent particle size on the removal of Pb (II) using Maize Cob

5.9.2 Effect of Initial concentration on the removal of Pb (II) using Maize cob

5.9.3 Effect of adsorbent dosage on the removal of Pb (II) using Maize cob

5.9.4 Effect of contact time on the removal of Pb (II) using Maize cob

5.9.5 Effect of agitation on the removal of Pb (II) using Maize cob

5.9.6 Effect of pH on the removal of Pb (II) using Maize Cob

5.10 Isotherm studies on removal of Lead

5.10.1 Adsorption Isotherm Models

5.10.2 Biosorption Kinetics Studies

5.11 Discussion

6 APPLICATION OF BIOSORPTION EXPERIMENTS ON EFFLUENTS FROM TANNERY, BATTERY AND CRACKERS INDUSTRIES

6.1 Introduction

6.2 Materials and methods

6.2.1 Collection of effluent samples

6.2.2 Comparison of the parameters of the collected wastewater sample with the Permissible limit stipulated WHO.

6.3 Industries waste water treatment by using Bioadsorbents
6.3.1 Experiment procedure industrial waste water 166
6.3.2 Removal of lead from cracker industries waste water using bioadsorbents 166
6.4 Result and Discussion 167
6.5 Conclusion 168

7 SUMMARY AND CONCLUSION 170
REFERENCES 175
LIST OF PUBLICATIONS 201
CURRICULUM VITAE 203