LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Typical failure modes of RCC beam column joints. a. Joint shear failure. b. Inadequate reinforcement anchorage (Akashu Sharma(2011))</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Typical beam-column joint failures (1999 Turkey earthquake) (Akashu Sharma(2011))</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>(a) Typical non-ductile detailing prescribed by older codes; (b) Typical ductile detailing prescribed by newer codes (ISET (1981))</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Reinforcement steel congestion at beam column joint</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>Types of joints in a frame (Megget, L.M. (2005))</td>
<td>6</td>
</tr>
<tr>
<td>1.6</td>
<td>Interior joint (S.S.Patil(2013))</td>
<td>6</td>
</tr>
<tr>
<td>1.7</td>
<td>Exterior joint (S.S.Patil(2013))</td>
<td>7</td>
</tr>
<tr>
<td>1.8</td>
<td>Corner joint (S.S.Patil(2013))</td>
<td>7</td>
</tr>
<tr>
<td>1.9</td>
<td>Beam – column joints are critical parts of a building (Ravi.S.Robert(2012))</td>
<td>8</td>
</tr>
<tr>
<td>1.10</td>
<td>Pull-push forces in joints cause two problems-these results in irreparable damage in joint under strong seismic shaking.(Ravi.S.Robert(2012))</td>
<td>8</td>
</tr>
<tr>
<td>1.11</td>
<td>Flow chart for research methodology</td>
<td>11</td>
</tr>
<tr>
<td>2.1</td>
<td>Shear Mechanism(S. S. Patil (2013))</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>RCC beam column joint details</td>
<td>38</td>
</tr>
</tbody>
</table>
3.2 RCC beam column joint with diagonal cross bracing bars at the joint.
3.3 RCC beam column joint with diagonal cross bracing bars at the joint and extending in beam direction 0.1B
3.4 RCC beam column joint with diagonal cross bracing bars at the joint and extending in beam direction 0.2B
3.5 RCC beam column joint with diagonal cross bracing bars at the joint and extending in beam direction 0.3B
3.6 RCC beam column joint with diagonal cross bracing bars at the joint and extending in column direction 0.1H
3.7 RCC beam column joint with diagonal cross bracing bars at the joint and extending in column direction 0.2H
3.8 RCC beam column joint with diagonal cross bracing bars at the joint and extending in column direction 0.3H
3.9 RCC beam column joint with diagonal cross bracing bars at the joint and extending in beam direction 0.3B and column by 0.3H.
3.10 RCC beam column joint with steel fibre at the joint
3.11 RCC beam column joint with steel fibre at the joint and extending in beam direction by 0.1B
3.12 RCC beam column joint with steel fibre at the joint and extending in beam direction by 0.2B
3.13 RCC beam column joint with steel fibre at the joint and extending in beam direction by 0.3B
3.14 RCC beam column joint with steel fibre at the joint and extending in column direction by 0.1H
3.15 RCC beam column joint with steel fibre at the joint and extending in column direction by 0.2H
3.16 RCC beam column joint with steel fibre at the joint and extending in column direction by 0.3H

3.17 RCC beam column joint with steel fibre at the joint and extending in beam direction by 0.3B and column direction by 0.3H

3.18 Typical view of fabricated reinforcement cage as per IS-456-2000

3.19 Typical view of fabricated reinforcement cage with diagonal cross bracing bars at the joint.

3.20 Typical view of steel fibre for adding to the beam column joint.

3.21 Typical view of casting of beam column joints as per IS 456-2000

3.22 Typical view of casting of specimens and concrete cubes

3.23 Typical view of casting of specimens with steel fibre at the joint

3.24 Typical view of beam column joint specimens.

3.25 Typical view of beam column joint specimens test setup

3.26 Test load cell.

4.1 SOLID 65 Element

4.2 LINK 8 Element

4.3 SOLID 45 Element

4.4 Stress –Strain Curve for Concrete

4.5 Beam cross section and reinforcement details

4.6 Column cross section and reinforcement details

4.7 Beam- column joint models

4.8 ANSYS meshing of typical beam column joint

4.9 ANSYS beam column reinforcement modeling for normal joint
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.10</td>
<td>ANSYS beam column reinforcement modeling for normal joint view</td>
<td>67</td>
</tr>
<tr>
<td>4.11</td>
<td>External joint under static loading</td>
<td>67</td>
</tr>
<tr>
<td>4.12</td>
<td>ANSYS modeling under static loading. Deflection</td>
<td>68</td>
</tr>
<tr>
<td>4.13</td>
<td>P_u & W_{max} - bending stress</td>
<td>69</td>
</tr>
<tr>
<td>4.14</td>
<td>P_u & W_{max} - shear stress</td>
<td>69</td>
</tr>
<tr>
<td>4.15</td>
<td>Moment- rotations graph</td>
<td>71</td>
</tr>
<tr>
<td>4.16</td>
<td>ANSYS modeling under dynamic loading. Deflection</td>
<td>72</td>
</tr>
<tr>
<td>4.17</td>
<td>P_u & W_{max} - shear stress</td>
<td>73</td>
</tr>
<tr>
<td>4.18</td>
<td>P_u & W_{max} - Bending stress</td>
<td>73</td>
</tr>
<tr>
<td>4.19</td>
<td>Moment- rotations graph</td>
<td>75</td>
</tr>
<tr>
<td>4.20</td>
<td>ANSYS beam column reinforcement modeling of joint with diagonal bars</td>
<td>76</td>
</tr>
<tr>
<td>4.21</td>
<td>ANSYS beam column reinforcement modeling of joint with diagonal bars view</td>
<td>77</td>
</tr>
<tr>
<td>4.22</td>
<td>ANSYS beam column reinforcement modeling of joint with diagonal bars extending in beam and column</td>
<td>77</td>
</tr>
<tr>
<td>4.23</td>
<td>ANSYS beam column reinforcement modeling of joint with diagonal bars extending in beam and column</td>
<td>78</td>
</tr>
<tr>
<td>4.24</td>
<td>External joint static analysis using diagonal bars at the joint</td>
<td>79</td>
</tr>
<tr>
<td>4.25</td>
<td>P_u & W_{max} - deflection</td>
<td>79</td>
</tr>
<tr>
<td>4.26</td>
<td>P_u & W_{max} - bending</td>
<td>80</td>
</tr>
<tr>
<td>4.27</td>
<td>P_u & W_{max} - shear</td>
<td>81</td>
</tr>
<tr>
<td>4.28</td>
<td>Load-Deflection graph</td>
<td>82</td>
</tr>
<tr>
<td>4.29</td>
<td>Load- shear stress graph</td>
<td>82</td>
</tr>
<tr>
<td>4.30</td>
<td>Load- bending stress graph</td>
<td>83</td>
</tr>
<tr>
<td>4.31</td>
<td>Moment- rotation graph</td>
<td>83</td>
</tr>
<tr>
<td>4.32</td>
<td>External joint using diagonal bars at the joint extending in beam by 0.1B</td>
<td>85</td>
</tr>
</tbody>
</table>
4.33 External joint using diagonal bars at the joint extending in beam by 0.2B
4.34 External joint using diagonal bars at the joint extending in beam by 0.3B
4.35 P_u & $W_{max} - 0.1B$ static deflection
4.36 P_u & $W_{max} - 0.1B$ static bending stress
4.37 P_u & $W_{max} - 0.1B$ static shear stress
4.38 P_u & $W_{max} - 0.1B$ dynamic deflection
4.39 P_u & $W_{max} - 0.1B$ dynamic bending stress
4.40 P_u & $W_{max} - 0.1B$ dynamic shear stress
4.41 Deflection graph for diagonal bars in beam direction
4.42 Shear stress graph for diagonal bars in beam direction
4.43 Bending stress graph for diagonal bars in beam direction
4.44 Diagonal bars extended in column by 0.1H
4.45 Diagonal bars extended in column by 0.2H
4.46 Diagonal bars extended in column by 0.3H
4.47 P_u & $W_{max} - 0.1H$ static deflection
4.48 P_u & $W_{max} - 0.1H$ static bending stress
4.49 P_u & $W_{max} - 0.1H$ static shear stress
4.50 P_u & $W_{max} - 0.1H$ dynamic deflection
4.51 P_u & $W_{max} - 0.1H$ dynamic shear stress
4.52 P_u & $W_{max} - 0.1H$ dynamic bending stress
4.53 Deflection graph for diagonal bars in column direction
4.54 Shear stress graph for diagonal bars in column direction
4.55 Bending stress graph for diagonal bars in column direction
4.56 Beam – Column joint using steel fibres at the joint
4.57 P_u & $W_{max} - . static deflection
4.58 P_u & $W_{max} - . dynamic shear stress
4.59 External joint using steel fibers extending in beam by 0.1H
4.60 $P_u & W_{\text{max}}$ deflection extending in beam by 0.1B. 107
4.61 $P_u & W_{\text{max}}$ bending stress extending in beam by 0.1B 108
4.62 Deflection graph for steel fibres in beam direction 109
4.63 Shear stress graph for steel fibres in column direction 109
4.64 Bending stress graph with steel fibres in column direction 110
4.65 External joint using steel fibers extending in beam by 0.2B 111
4.66 External joint using steel fibers extending in beam by 0.3B 112
4.67 External joint using steel fibers extending in column by 0.1H 112
4.68 $P_u & W_{\text{max}} - 0.1H$ static deflection 113
4.69 External joint using steel fibers extending in column by 0.2H 114
4.70 External joint using steel fibers extending in column by 0.3H 114
4.71 Deflection static vs dynamic 115
4.72 Shear stress static vs dynamic 119
4.73 Average load - displacement curve 124
4.74 Average ultimate load 125
4.75 Average displacement ductility 126
4.76 Moment - rotation curves for diagonal bar joint vs normal joint 127
4.77 Moment - rotation curves for steel fibre joint vs normal joint 128
4.78 Moment – rotation curves 129
4.79 Cumulative energy dissipation 130
5.1 Typical view of test setup for the beam-column joint specimen 138
5.2 Typical view of test setup for the beam-column joint specimen 138
5.3 Typical view of test setup for the beam-column joint specimen with digital load indicator 139
5.4 RCC beam column joint reinforcement details 141
5.5 Specimen A testing in progress 142
5.6 Specimen A crack pattern 142
5.7 Specimen A crack pattern
5.8 Specimen A crack pattern
5.9 Specimen B testing in progress
5.10 Specimen B crack pattern.
5.11 Specimen B crack pattern
5.12 Specimen C crack pattern
5.13 Specimen C crack patterns
5.14 Specimen C crack patterns
5.15 Specimen D testing in progress
5.16 Specimen D crack developed
5.17 Specimen D crack pattern
5.18 Specimen D crack pattern
5.19 Specimen E testing progress
5.20 Specimen E crack pattern
5.21 Ultimate load of specimens
5.22 Average displacement ductility of specimens
5.23 Specimen as per-IS-456-2000- analysis
5.24 Specimen as per-IS-456-2000- experiment
5.25 Specimen with cross diagonal bars at the joint- analysis
5.26 Specimen with cross diagonal bars at the joint- experiment
5.27 Specimen with cross diagonal bars extended - analysis
5.28 Specimen with cross diagonal bars extended - experiment
5.29 Specimen with steel fibres at the joint- analysis
5.30 Specimen with steel fibres at the joint- experiment
5.31 Specimen with steel fibres extended- analysis
5.32 Specimen with steel fibres extended- experiment
5.33 Experiment-Cumulative energy dissipation
5.34 Moment – rotation IS 456 and diagonal bars
5.35 Moment rotation IS 456 and steel fibres