Table of Contents

<table>
<thead>
<tr>
<th>Particulars</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>i</td>
</tr>
<tr>
<td>List of figures</td>
<td>iv</td>
</tr>
<tr>
<td>List of schemes</td>
<td>xv</td>
</tr>
<tr>
<td>List of tables</td>
<td>xvi</td>
</tr>
<tr>
<td>List of abbreviation</td>
<td>xvii</td>
</tr>
<tr>
<td>Abstract of the thesis</td>
<td>xviii</td>
</tr>
<tr>
<td>Chapter 1 Introduction and Literature Survey</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction: Polypeptides</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Synthesis of polypeptides</td>
<td>3</td>
</tr>
<tr>
<td>1.2.1 Solid phase synthesis of polypeptides</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2 N-Carboxyanhydride (NCA) ring opening polymerization</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2.1 Synthesis of α-Amino acid NCAs</td>
<td>5</td>
</tr>
<tr>
<td>1.2.2.2 Purification of NCAs</td>
<td>8</td>
</tr>
<tr>
<td>1.2.2.3 Characterization of NCAs</td>
<td>10</td>
</tr>
<tr>
<td>1.2.2.3.1 IR spectroscopy</td>
<td>10</td>
</tr>
<tr>
<td>1.2.2.3.2 NMR spectroscopy</td>
<td>11</td>
</tr>
<tr>
<td>1.2.2.4 Polymerization of NCAs: Chemical aspect</td>
<td>12</td>
</tr>
<tr>
<td>1.2.2.5 Polymerization of NCAs: Physical aspect</td>
<td>17</td>
</tr>
<tr>
<td>1.3 Biomedical applications of synthetic polypeptides</td>
<td>18</td>
</tr>
<tr>
<td>1.4 Surface modification by polymers for biomedical applications</td>
<td>19</td>
</tr>
<tr>
<td>1.5 Organic-inorganic silica nanocomposites</td>
<td>20</td>
</tr>
<tr>
<td>1.5.1 Polymer/silica nanocomposites</td>
<td>21</td>
</tr>
<tr>
<td>1.5.1.1 Modification by physical interaction</td>
<td>22</td>
</tr>
<tr>
<td>1.5.1.2 Modification by chemical interaction</td>
<td>22</td>
</tr>
<tr>
<td>1.5.1.2.1 ‘Grafting from’ methodology</td>
<td>23</td>
</tr>
<tr>
<td>1.5.1.2.2 ‘Grafting to’ methodology</td>
<td>23</td>
</tr>
<tr>
<td>1.5.1.2.2.1 Click chemistry</td>
<td>24</td>
</tr>
<tr>
<td>1.5.1.3 Applications of surface modified silica</td>
<td>25</td>
</tr>
<tr>
<td>1.6 Physico-chemical Characterization</td>
<td>26</td>
</tr>
<tr>
<td>1.6.1 Fourier Transform Infra Red Spectroscopy (FT-IR)</td>
<td>26</td>
</tr>
<tr>
<td>1.6.2 Gel Permeation Chromatography (GPC)</td>
<td>27</td>
</tr>
</tbody>
</table>
1.6.3 Thermogravemetric analysis (TGA) 28
1.6.4 Nuclear magnetic resonance (NMR) spectroscopy 29
1.6.5 Electron microscopy 30
 1.6.5.1 Transmission electron microscopy (TEM) 30
 1.6.5.2 Scanning electron microscopy (SEM) 30
1.6.6 Dynamic Light Scattering (DLS) 31
1.6.7 Zeta potential 33
1.7 Motivation and objectives of the present work 34
1.8 Outline of the thesis 36
1.9 References 38

Chapter 2 Synthesis and Characterization of “clickable” Polypeptides by NCA Polymerization 51
2.1 Introduction 52
2.2 Approach and strategy for selecting alkyne terminated polypeptides 53
2.3 Experimental section 54
 2.3.1 Materials 54
 2.3.2 Synthesis 55
 2.3.2.1 Synthesis of alkyne terminated poly-L-Lysine 55
 2.3.2.1.1 Synthesis of α,ε-dicarbobenzoxy-L-lysine 55
 2.3.2.1.2 Synthesis of ε-carbobenzoxy-α-carboxyl-L-lysine anhydride 55
 2.3.2.1.3 Synthesis of alkyne terminated ε-carbobenzoxy poly-L-lysine 56
 2.3.2.1.4 Synthesis of alkyne terminated poly-L-lysine 56
 2.3.2.2 Synthesis of alkyne terminated poly-L-lysine-α-car-poly-L-isoleusine 57
 2.3.2.2.1 Synthesis of alkyne terminated ε-carbobenzoxy poly-L-lysine-α-car-poly-L-leucine 57
 2.3.2.2.2 Synthesis of alkyne terminated poly-L-lysine-block-poly-L-lysine-block-poly-L-isoleusine 58
 2.3.2.3 Synthesis of alkyne terminated poly-L-benzyl glutamate 58
 2.3.2.4 Synthesis of alkyne terminated poly-L-Glutamic Acid 58
 2.3.2.4.1 Synthesis of phtlaloyl-L-glutamic anhydride 58
2.3.2.4.2 Synthesis of phtaloyl-para-methoxybenzyl-L-glutamate 59
2.3.2.4.3 Synthesis of p-methoxybenzyl-L-glutamate 59
2.3.2.4.4 Synthesis of p-methoxybenzyl-L-glutamate NCA 60
2.3.2.4.5 Synthesis of alkyne terminated poly-p-methoxybenzyl-L-glutamate 61
2.3.2.4.6 Synthesis of alkyne terminated poly-L-glutamic acid 61
2.3.2.5 Synthesis of alkyne terminated poly-L-Arginine 62
2.3.2.5.1 Synthesis of sodium tricarbobenzoxylated L-arginine 62
2.3.2.5.2 Synthesis of tricarbobenzoxylated L-arginine 62
2.3.2.5.3 Synthesis of dicarbobenzoxy-α-carboxyl-L-arginine anhydride 63
2.3.2.5.4 Synthesis of alkyne terminated dicarbobenzoxy-poly-L-arginine 63
2.3.2.5.5 Synthesis of alkyne terminated poly-L-arginine 64
2.3.3 Analytical and characterisation methods 64
2.3.3.1 FT-IR 64
2.3.3.2 Size exclusion chromatography 64
2.4 Results and discussion 64
2.4.1 Characterizations of alkyne terminated polypeptides 64
2.4.1.1 Synthesis of alkyne terminated poly-L-lysine, poly-L-lysine-b-poly-L-leucine and poly-L-benzylglutamate 65
2.4.1.2 Synthesis of alkyne terminated poly-L-glutamic acid 68
2.4.1.3 Synthesis of alkyne terminated poly-L-arginine 70
2.5 Conclusion and summary 71
2.7 References 72

Chapter 3 Synthesis of polypeptides grafted silica nanoparticles and their application as biomaterials 74
3.1 Introduction 75
Table of contents

3.2 Experimental section 78

3.2.1 Materials 78

3.2.2 Synthesis 78

3.2.2.1 Synthesis of azidopropyl triethoxysilane (AzPTES) 78

3.2.2.2 Synthesis of azide grafted silica nanoparticles 79

3.2.2.3 Synthesis of poly-L-lysine grafted silica nanoparticles 79

3.2.2.4 Synthesis of poly-L-lysine-\emph{block}-poly-L-leucine grafted silica nanoparticles 80

3.2.2.5 Synthesis of poly-L-bengylglutamate grafted silica nanoparticles 80

3.2.2.6 Synthesis of poly-L-glutamic acid grafted silica nanoparticles 81

3.2.2.7 Synthesis of poly-L-arginine grafted silica nanoparticles 81

3.2.2.8 Synthesis of macroporous silica-PLGA scaffold 82

3.2.2.9 EDCI coupling of silica-PLGA and PEI 82

3.2.2.10 Synthesis of fluorescein labelled silica-PLArg 82

3.2.3 Analytical and Characterization Methods 82

3.2.3.1 FT-IR 82

3.2.3.2 ^{29}Si and ^{13}C solid state CP MAS NMR 82

3.2.3.3 Thermogravimetric analysis (TGA) 83

3.2.3.4 SEM and HR-TEM 83

3.2.3.5 Dynamic light scattering and zeta potential 84

3.2.3.6 Antibacterial test 84

3.2.3.7 DNA retardation studies using gel electrophoresis 84

3.2.3.8 Cell culture 84

3.2.3.9 Cytotoxicity assay 85

3.2.3.10 In vitro transfection study 85

3.2.3.11 Fluorescence imaging of cells transfected with DNA-silica-PLArg polyplex 85

3.3 Results and Discussions 86

3.3.1 Synthesis and characterisation of azide grafted silica nanoparticles 86

3.3.2 Synthesis and characterisation of silica-PLL, silica-PLL-\emph{b}-PLLeu and silica-PLBG 88

3.3.3 Synthesis and characterisation of silica poly-L-glutamic acid 94
3.3.4 Synthesis and characterisation of silica poly-L-arginine 96
3.3.5 Aggregation behaviour of polypeptide grafted silica nanoparticles in solution 98
3.3.6 pH responsive behaviour of silica-PLGA nanoparticles in solution 99

3.4 Applications of silica polypeptide nanoconjugates as biomaterials 102
3.4.1 Antibacterial properties of silica-PLL and silica-PLL-b-PLLeu 102
3.4.2 Assembly of silica-PLGA nanoparticles into 3D macroporous scaffold and disassembly of these scaffold 103
3.4.3 Cell uptake and transfection studies with positively charged silica nanoconjugates 107
3.4.3.1 Study of plasmid DNA silica-PLL, silica-PLArg(20) and silica-PLArg(10) polyplex formation using agarose gel electrophoresis 108
3.4.3.2 Cytotoxicity assay of silica-PLArg nanoconjugates 108
3.4.3.3 Cellular uptake of the silica-PLArg nanoconjugates 110
3.4.3.4 DNA transfection studies with silica-PLArgs 111

3.7 Conclusions 113
3.8 References 114

Chapter 4 Synthesis of polypeptide grafted silica mesoporous materials by “click chemistry” and their application as a biomaterial 122

4.1 Introduction 123
4.2 Experimental section 127
4.2.1 Materials 122
4.2.2 Synthesis 127
4.2.2.1 Synthesis of 3-azidopropyltrimethoxysilane 127
4.2.2.2 Synthesis of alkyne terminated poly(ethylene glycol) methyl ether (mol. wt. 1000 and 2000) 128
4.2.2.3 Synthesis of SBA-15 (CAL-SBA-15) 128
4.2.2.4 Synthesis of azide grafted SBA-15 (N₃-SBA-15) 128
4.2.2.5 Synthesis of mesoporous silica nanoparticles (MSN) 129
4.2.2.6 Synthesis of Outside surface functionalization of MSN with AzPTES 129
4.2.2.7	Synthesis of SBA-15 poly-L-lysine conjugates using CuAAC	129
4.2.2.8	Synthesis of SBA-15 polyethylene glycol (SBA-PEG) conjugates using CuAAC	130
4.2.2.9	Synthesis of mesoporous silica nanoparticle poly-L-lysine conjugates using CuAAC	131
4.2.2.10	Synthesis of fluorescein labelled MSN-PLArg	131
4.2.3	Characterisations and methods	132
4.2.3.1	Fourier Transform Infra Red Spectroscopy (FT-IR)	132
4.2.3.2	29Si and 13C CP-MAS NMR Spectroscopy	132
4.2.3.3	Thermogravimetric analysis (TGA)	132
4.2.3.4	SEM and HR-TEM	133
4.2.3.5	Dynamic light scattering and zeta potential	133
4.2.3.6	Nitrogen adsorption and desorption	133
4.2.3.7	DNA retardation studies using gel electrophoresis	134
4.2.3.8	Cell lines and culture	134
4.2.3.9	Cytotoxicity assay	134
4.2.3.10	In vitro transfection	134
4.2.3.11	Fluorescence imaging of the cells transfected with DNA-MSN-PLArg polyples	135
4.2.3.12	Determination/ quantification of transfection efficiency of polyplex	135
4.3	Results and discussion	135
4.3.1	Synthesis and characterisation of azide functionalized SBA-15	135
4.3.2	Synthesis and characterisation of SBA-PLL hybrid	137
4.3.3	Synthesis and characterisation of MSN-poly-L-arginine	143
4.3.4	Study of plasmid DNA MSN-PLArg polyplex formation using agarose gel electrophoresis	144
4.3.5	Cytotoxicity assay of MSN-PLArg nanoconjugates	145
4.3.6	Cellular uptake of the MSN-PLArg nanoconjugates	147
4.3.7	Transfection studies of the MSN-PLArg nanoconjugates	148
4.4	Conclusions	151
4.5	References	152
Table of contents

<table>
<thead>
<tr>
<th>Chapter 5</th>
<th>Conclusion and future directions</th>
<th>158</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Summary and conclusions</td>
<td>159</td>
</tr>
<tr>
<td>5.2</td>
<td>Scope of future work</td>
<td>162</td>
</tr>
<tr>
<td>5.3 References</td>
<td></td>
<td>164</td>
</tr>
<tr>
<td>Appendix I</td>
<td></td>
<td>165</td>
</tr>
<tr>
<td>Appendix II</td>
<td></td>
<td>177</td>
</tr>
<tr>
<td>Appendix III</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>Curriculum vitae</td>
<td></td>
<td>181</td>
</tr>
</tbody>
</table>