Table of Contents

List of Tables

List of Figures

Abbreviations

Abstract

Chapter-1: Review of literature

1.0 High-Altitude

1.1 High altitude pulmonary edema

1.1.1 Pathophysiology

1.1.2 Prevention and treatment

1.1.3 Genetic basis

1.2 High altitude adaptation

1.2.1 Genetic basis

1.3 Sympathetic nervous system

1.4 Catecholamines

1.5 Alpha-1-adrenergic receptor system

1.6 Kinases

1.6.1 Kinases under study

1.7 Rho-associated, coiled-coil containing protein kinase 2

1.8 Myosin light chain kinase

1.9 c-jun N terminal kinase isoform 1

1.10 Schematic representation of the selected pathway

1.11 Objectives

Chapter-2: Clinical and biochemical evaluations

2.0 Introduction

2.1 Materials and methods

2.1.1 Ethics Statement

2.1.2 Study Groups

2.1.3 Selection of study subjects

2.1.4 Clinical parameters

2.1.5 Sample collection

2.1.6 Biomarker estimation

2.1.6.1 Epinephrine

2.1.6.2 Norepinephrine

2.1.6.3 Dopamine

2.1.6.4 Tyrosine hydroxylase

2.1.6.5 Transforming growth factor beta 1

2.1.6.6 Tumor necrosis factor alpha

2.1.6.7 Platelet-derived growth factor beta

2.1.6.8 C-reactive protein

2.1.7 Statistical analysis
2.1.8 Correlation analysis

2.2 Results
2.2.1 Clinical characteristics
2.2.2 Biomarker evaluation
 2.2.2.1 Epinephrine
 2.2.2.2 Norepinephrine
 2.2.2.3 Dopamine
 2.2.2.4 Tyrosine hydroxylase
 2.2.2.5 Transforming growth factor beta 1
 2.2.2.6 Tumor necrosis factor alpha
 2.2.2.7 Platelet derived growth factor BB
 2.2.2.8 C-reactive protein
2.2.3 Correlation analysis
 2.2.3.1 Correlation analysis between the biomarkers
 2.2.3.2 Correlation analysis between clinical parameters and biomarkers
 2.2.3.2.1 Correlations between arterial oxygen saturation and biomarkers
 2.2.3.2.2 Correlations between body mass index and biomarkers
 2.2.3.2.3 Correlations between mean arterial pressure and biomarkers
2.3 Discussion

Chapter-3: Genetic study
3.0 Introduction
3.1 Materials and methods
 3.1.1 Genomic DNA extraction
 3.1.2 Reagents for DNA isolation
 3.1.3 Procedure of DNA isolation
 3.1.4 Quantification of DNA
 3.1.5 Agarose gel electrophoresis
 3.1.6 Selection of polymorphisms
 3.1.7 Genotyping
3.2 Statistical analysis
 3.2.1 Testing for Hardy-Weinberg equilibrium
 3.2.2 Genetic models of inheritance for association studies: Genotypic and allelic distributions
 3.2.3 Identification of tagged SNPs
 3.2.4 Haplotype analysis and LD pattern
 3.2.5 Interactions
 3.2.5.1 Haplotype-haplotype interaction
 3.2.5.2 Gene-Gene interaction
 3.2.6 Haplotype-biomarker correlations
 3.2.7 In silico analysis of significantly associated SNPs
3.3 Results
3.3.1 Genotype and allele distributions
3.3.2 Identification of tagged SNPs
3.3.3 Haplotypes and LD pattern
3.3.4 Interactions
3.3.5 In silico analysis of significantly associated SNPs
 3.3.5.1 Specificity of transcription factors
 3.3.5.2 Effect on the structure of mRNA
3.3.6 Correlation

3.4 Discussion

Chapter-4: Gene expression analysis

4.0 Introduction

4.1 Materials and methods
4.1.1 RNA isolation
 4.1.1.1 Principle
 4.1.1.2 Protocol
4.1.2 cDNA synthesis
 4.1.2.1 Protocol
4.1.3 Primer Designing
4.1.4 Preparation of working primer stocks
4.1.5 Quantitative real time-polymerase chain reaction
 4.1.5.1 Principle
 4.1.5.2 Protocol
4.1.6 Statistical analysis

4.2 Results
4.2.1 Rho-associated, coiled-coil containing protein kinase 2
4.2.2 Myosin light chain kinase
4.2.3 c-jun N terminal kinase isoform 1
4.2.4 Tyrosine hydroxylase
4.2.5 Guanine nucleotide-binding protein [G protein], alpha 11
 [Gq class]
4.2.6 Guanine nucleotide-binding protein (G protein), beta
 polypeptide 3
4.2.7 Adrenoceptor alpha 1A
4.2.7 Adrenoceptor alpha 1B
4.2.7 Adrenoceptor alpha 1D

4.3 Discussion

Chapter-5: Evaluation of the three kinases in rat model

5.0 Introduction

5.1 Materials and methods
5.1.1 Ethics statement
5.1.2 Study design
5.1.3 Staining, immunohistochemistry and western blot
5.1.4 Quantitative real time-PCR (qRT-PCR) 144
5.1.5 Estimation of ROCK2, MYLK, and JNK1 protein level 145
5.1.6 Estimation of ROCK2, MYLK, and JNK1 activity 147
5.1.7 Statistical analysis 149
5.2 Results 150
 5.2.1 Clinical presentation assessed through staining of tissue sections 150
 5.2.2 Various parameters measured in the study 154
 5.2.3 Gene expression 156
 5.2.3.1 Expression analysis in tissues 156
 5.2.3.2 Expression analysis in PBMCs 157
 5.2.4 Protein level of the three kinases in different tissues 158
 5.2.5 Activity of the three kinases in different tissues 164
 5.2.6 Correlation analysis between the kinase levels and activity 168
 5.2.7 Immunohistochemistry 171
 5.2.8 Western blot 176
5.3 Discussion 180

Summary and Conclusions 184-193
References 194-224
Credentials