Table of contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>Pg. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviations</td>
<td>i-iv</td>
</tr>
<tr>
<td>Synopsis</td>
<td>i-iv</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction and review of literature 1-40

1.1 Candida and Candidiasis: An introduction 1

1.1.1 Kingdom Fungi 1
1.1.2 Human fungal pathogens 1
1.1.3 Candida species and C. glabrata 2
1.1.4 Epidemiology of Candida infections 4
1.1.5 Virulence factors 6

- 1.1.5.1 Adherence 6
- 1.1.5.2 Biofilm formation 7
- 1.1.5.3 Hydrolytic activity 8
- 1.1.5.4 Morphological forms 9
- 1.1.5.5 Phenotypic switching and mating 10

1.2 Treatment of fungal infections: Antifungal drugs 10

1.2.1 Azoles 11
1.2.2 Polyenes 12
1.2.3 Pyrimidines 13
1.2.4 Echinocandins 13

1.3 Phosphatidylinositol 3-kinase (PI 3-kinase) 14

1.3.1 Vacuolar protein sorting 34 (VPS34) 14
1.3.2 Vacuolar protein sorting 15 (VPS15) 16
1.3.3 PI 3-kinase complex in S. cerevisiae 16

- 1.3.3.1 PI 3-kinase complex I (Autophagy) 18
- 1.3.3.2 PI 3-kinase complex II (CPY sorting) 19

1.3.4 Other functions of PI 3-kinase 19
1.3.5 PI 3-kinase in other medically important fungi 20

- 1.3.5.1 Candida albicans 20
1.3.5.2 Cryptococcus neoformans

1.4 Role of iron in pathogenesis and virulence of *C. glabrata*

1.4.1 Iron acquisition in *C. glabrata*

1.4.1.1 High affinity iron uptake system

1.4.1.2 Low affinity iron uptake system

1.4.1.3 Host-specific iron uptake system

1.4.1.4 Siderophore uptake system

1.4.2 Fet3/Ftr1 complex in *S. cerevisiae*

1.5 Interaction of *C. glabrata* with host cells: survival and immune evasion strategies

1.5.1 Interaction of *C. glabrata* with macrophages

1.5.1.1 Recognition, entry and phagocytosis

1.5.1.2 Modification of phagosome maturation and oxidative stress resistance

1.5.1.3 Metabolic adaptation of *C. glabrata* to the intracellular macrophage environment

1.5.1.4 Exit of *C. glabrata* from intracellular niche of macrophages

1.5.1.5 Microevolution within macrophages

1.5.2 Interaction of *C. glabrata* with neutrophils

1.5.3 Interaction of *C. glabrata* with epithelial cells

1.5.4 Interaction of *C. glabrata* with endothelial cells

1.5.5 Interaction of *C. glabrata* with dendritic cells

1.5.6 *Candida* infection models

1.5.6.1 Mucosal infection models

1.5.6.2 Invasive infection models

1.5.6.2.1 Intravenous challenge model

1.5.6.2.2 Gastrointestinal (GI) model: colonization and dissemination

1.5.7 Mice immune response against *C. glabrata*

Objectives of the present study
Chapter 2 Materials and methods 41-76

2.1 Materials 41

2.1.1 Strains and Plasmids 41
2.1.2 Primers 41
2.1.3 Antibodies 41
2.1.4 Chemicals, kits and culture media components 45
2.1.5 Media 46
 2.1.5.1 Bacterial media 46
 2.1.5.2 Yeast media 47
2.1.6 Buffers and solutions 48
 2.1.6.1 Common buffers 48
 2.1.6.2 Buffers for extraction of nucleic acids 49
 2.1.6.3 Buffers for protein extraction and separation by SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis) 50
 2.1.6.4 Buffers for western blot analysis 52
 2.1.6.5 Other buffers 53
 2.1.6.5.1 Buffers for mitochondria extraction and determination of aconitase activity and mitochondrial iron content 53
 2.1.6.5.2 Oxidase activity assay buffer 54
 2.1.6.5.3 PI 3-kinase assay buffer 54

2.2 Methods 55

2.2.1 Microbiological techniques 55
 2.2.1.1 Strains and culture conditions 55
 2.2.1.2 Generation of C. glabrata deletion strains 55
 2.2.1.3 Yeast transformation 56
 2.2.1.4 Serial dilution spotting assay 57
 2.2.1.5 Preparation of E. coli DH5α ultracompetent cells 57
 2.2.1.6 Bacterial transformation 57

2.2.2 Mammalian cell culture techniques 58
2.2.2. Cell lines and culture conditions
- **2.2.2.1** Cell lines and culture conditions
- **2.2.2.2** Cryopreservation and revival of THP-1 cell line
- **2.2.2.3** Differentiation of THP-1 moncytic cells to macrophages with phorbol myrsityl acetate
- **2.2.2.4** Macrophage single infection assay
- **2.2.2.5** Collection of *C. glabrata* cells after macrophage internalization for protein and RNA extraction
- **2.2.2.6** Macrophage mixed infection assay

2.2.3 Molecular Biology techniques
- **2.2.3.1** Yeast Genomic DNA isolation
 - **2.2.3.1.1** Spheroplast lysis method
 - **2.2.3.1.2** Glass bead lysis method
- **2.2.3.2** Yeast colony PCR by zymolyase digestion
- **2.2.3.3** RNA extraction
 - **2.2.3.3.1** Yeast RNA extraction
 - **2.2.3.3.2** THP-1 RNA extraction
- **2.2.3.4** DNase I digestion
 - **2.2.3.4.1** Yeast RNA
 - **2.2.3.4.2** Mammalian RNA
- **2.2.3.5** Complementary DNA (cDNA) synthesis
- **2.2.3.6** Quantitative Real-time PCR
- **2.2.3.7** Protein extraction
 - **2.2.3.7.1** Yeast cells
 - **2.2.3.7.2** Mammalian cells
- **2.2.3.8** Western blotting
- **2.2.3.9** Plasmid isolation
- **2.2.3.10** Gel extraction, PCR purification and reaction clean-up
- **2.2.3.11** Restriction digestion and ligation
- **2.2.3.12** Site-directed mutagensis
- **2.2.3.13** RNA-sequencing
2.2.3.14 Microarray analysis

2.2.4 Microscopy techniques
2.2.4.1 Fluorescein isothiocyanate (FITC) labelling
2.2.4.2 Lysotracker staining and fixation of THP-1 macrophages
2.2.4.3 Labelling of \textit{C. glabrata} vacuoles with FM 4-64
2.2.4.4 Autophagy analysis
2.2.4.5 MitoTracker Green FM staining
2.2.4.6 Ferritin staining
2.2.4.7 Iron shock assay
2.2.4.8 Staining of plasma membrane with TMA-DPH

2.2.5 Other methods
2.2.5.1 Mice infection assay
2.2.5.2 Measurement of intracellular metal ion levels
2.2.5.3 Determination of mitochondrial aconitase activity and mitochondrial iron level
2.2.5.4 Measurement of intracellular ROS (reactive oxygen species) levels
2.2.5.5 Determination of ATP levels
2.2.5.6 \textit{p}-Phenylenediamine oxidase-assay
2.2.5.7 Phosphatidylinositol 3-kinase assay
2.2.5.8 Colony blot assay
2.2.5.9 Biofilm formation
2.2.5.10 Statistical analysis

Chapter 3 Construction and characterization of \textit{C. glabrata Cgatg14A} and \textit{Cgvps30A} mutants

3.1 Introduction

3.2 Results
3.2.1 \textit{CgVPS34} codes for a functional PI 3-kinase and kinase activity is essential for its function
3.2.2 Generation of Cgatg14Δ and Cgvps30Δ strains by homologous recombination 83
3.2.3 Cgatg14Δ and Cgvps30Δ mutants are not sensitive to diverse stressors 84
3.2.4 Deletion of CgATG14 and CgVPS30 did not cause any defect in sorting of vacuolar hydrolase, CPY 87
3.2.5 Cgvps15Δ, Cgvps34Δ, Cgvps30Δ and Cgatg14Δ mutants are defective in autophagy and in survival under nitrogen starvation conditions 88
3.2.6 Deletion of CgATG14 causes defect in intracellular survival but not in prevention of phagosome maturation 91
3.2.7 Comparative bio-burden analysis in murine model of systemic candidiasis 93

3.3 Discussion 95

Chapter 4 Role for CgVps34 in iron homeostasis in C. glabrata 98-142

4.1 Introduction 98

4.2 Results 99
4.2.1 The Cgvps34Δ mutant displays elevated intracellular ATP levels and tubular mitochondrial networks 99
4.2.2 RNA sequencing analysis reveals deregulation of iron metabolism genes in the Cgvps34Δ mutant 103
4.2.3 The Cgvps34Δ mutant has high intracellular iron levels, increased mitochondrial aconitase activity and high mitochondrial iron levels 110
4.2.4 The Cgvps34Δ mutant is susceptible to high-iron and low-iron conditions 112
4.2.5 The regulatory subunit of the PI 3-kinase complex (CgVps15) is also required for iron ion homeostasis 114
4.2.6 The Cgvps34Δ mutant is sensitive to various metal-ions and shows perturbed metal ion homeostasis 116
4.2.7 Overexpression of the vacuolar transporter CgCcc1 does not rescue iron toxicity in the Cgvps34Δ mutant 119
4.2.8 Transcriptional response to changes in the environmental iron content is not impaired in the Cgups34Δ mutant

4.2.9 Cell surface associated oxidase activity is elevated in the Cgups34Δ mutant

4.2.10 Retrograde transport of CgFtr1 transporter is defective in the Cgups34Δ mutant

4.2.11 Higher extracellular iron levels promote the survival of Cgups34Δ cells in macrophages

4.2.12 The Cgups34Δ mutant is defective in biofilm formation

4.2.13 The Cgups34Δ mutant is defective in mouse colonization

in vivo

4.3 Discussion

Chapter 5 Global transcriptional profiling analysis of THP-1 macrophages infected with C. glabrata wt and Cgups34Δ cells

5.1 Introduction

5.2 Results

5.2.1 C. glabrata wild-type cells displayed reduced proliferation in THP-1 macrophages in a mixed infection assay with the Cgups34Δ mutant

5.2.2 Global transcriptional profiling of THP-1 macrophages in response to wt and the Cgups34Δ mutant infection

5.2.3 Gene Ontology analysis of C. glabrata-infected THP-1 macrophages

5.2.4 C. glabrata infection induces extensive changes in the host cell gene expression that may contribute to chemotaxis of macrophages

5.2.5 C. glabrata infection induces upregulation of genes involved in maintaining calcium ion homeostasis

5.2.6 C/EBPβ is upregulated in THP-1 macrophages upon C. glabrata infection

5.3 Discussion