CHAPTER I: Introduction

1.1. Introduction to Nanomaterials

1.2. Metal nanoparticles

1.3. Anisotropic nanostructures

1.4. Bimetallic nanoparticles

1.5. Carbon based nanomaterials

1.6. Carbon nanomaterials-bimetallic nanoparticles composites

1.7. Electrochemical Sensors

1.8. General approaches for the fabrication of electrodes

1.9. Fuel cells

1.10. Significance of biologically important molecules and drugs

1.11. Oxidation of methanol and hydrazine and reduction of dioxygen at different modified electrodes
1.12. Determination of biomolecules and drugs using different modified electrodes

1.13. Aim and scope

1.14. References

CHAPTER II: Experimental Section

2.1. Chemicals and Materials

2.2. Real Samples

2.3. Instrumentation

2.4. Synthesis of monometallic Ag, Au and PtNPs

2.5. Synthesis of bimetallic Au-AgNPs

2.6. Synthesis of bimetallic Au-PtNPs

2.7. Fabrication of Au-AgNPs and Au-PtNPs on GCE

2.8. Electroless deposition of Au-AgNPs and Au-PtNPs on GCE

2.9. Preparation of growth solution and electrochemical deposition of Au seeds for the growth of Au nanostructures on ITO

2.10. Electrodeposition of different shaped copper nanostructures on ITO

2.11. Preparation of catalytic ink

2.12. Synthesis of SWCNTs on gold wire

2.13. Electroless deposition of Au-PtNPs on SWCNTs

2.14. Electroless deposition of Au-PtNPs on functionalized-MWCNTs
2.15. Synthesis of GO 81
2.16. Preparation of N-GO 82
2.17. Fabrication of GCE with NG/Au-PtNPs 83
2.18. Determination of particle coverage of AuNPs 83
2.19. Determination of electrochemically active surface area 84
2.20. Heterogeneous electron-transfer rate constant 84
2.21. Determination of crystallite size 84
2.22. Determination of lattice strain 85
2.23. Determination of detection limit 85
2.24. References 86

CHAPTER III: Synthesis and characterization of Au-Ag and Au-Pt core@shell NPs and their attachment on glassy carbon electrode for electrocatalytic applications

3.1. Introduction 88
3.2. Synthesis and characterization of Au@Ag NPs and their attachment on GCE for the reduction of HP and NB 88
3.3. Synthesis and characterization of Au@Pt NPs and their attachment on GCE for methanol oxidation and oxygen reduction 111
3.4. Conclusions 128
3.5. References 130
CHAPTER IV: Electroless deposition of Au-Ag and Au-Pt core@shell NPs on glassy carbon electrode for electrocatalytic applications

4.1. Introduction 134
4.2. Electroless deposition of Au-AgNPs for the determination of HP 135
4.3. Electroless deposition of Au-PtNPs on GC electrode for electrocatalytic applications 148
4.4. Conclusions 173
4.5. References 175

CHAPTER V: Anisotropic growth of Au and Cu nanostructures on indium-tin-oxide electrode for surface enhanced Raman scattering and electrocatalytic applications

5.1. Introduction 179
5.2. Direct growth of spherical, bipyramidal and wires of gold nanostructures on ITO substrate and their catalytic activity 180
5.3. Fabrication of different copper nanostructures on ITO electrode and their shape dependent electrocatalytic activity 198
5.4. Conclusions 221
5.5. References 223

CHAPTER VI: Electroless deposition of Au-PtNPs on single-walled and multi-walled carbon nanotubes modified electrodes for electrocatalytic applications

6.1. Introduction 227
6.2. Electroless deposition of Au-PtNPs on SWCNTs and their application towards glucose oxidation and HP reduction

6.3. Electroless deposition of Au-PtNPs on MWCNTs and their application towards methanol oxidation

6.4. Conclusions

6.5. References

CHAPTER VII: Fabrication of Au-PtNPs on nitrogen-doped graphene for electrochemical sensing applications

7.1. Introduction

7.2. Electroless deposition of Au-PtNPs on N-doped graphene and their application towards the oxidation of rutin and quercetin

7.3. Comparison of Au-Ag, Au-Pt, MWCNTs/Au-Pt and NG/Au-Pt electrodes towards the determination of HP

7.4. Conclusions

7.5. References

CHAPTER VIII: Summary

APPENDIX

List of Publications