# Table of Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Abbreviations</td>
<td>viii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xi-xii</td>
</tr>
<tr>
<td>Graphical Abstract</td>
<td>xiii-xvi</td>
</tr>
<tr>
<td><strong>Chapter 1</strong></td>
<td>1-10</td>
</tr>
<tr>
<td>1.1. General Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Alcohol oxidation</td>
<td>3</td>
</tr>
<tr>
<td>1.3. Synthesis of phenols</td>
<td>5</td>
</tr>
<tr>
<td>1.4. Suzuki-Miyaura cross-coupling reaction</td>
<td>6</td>
</tr>
<tr>
<td>1.5. Diaryl ether synthesis</td>
<td>7</td>
</tr>
<tr>
<td>1.6. References</td>
<td>8</td>
</tr>
<tr>
<td><strong>Chapter 2</strong></td>
<td>11-70</td>
</tr>
<tr>
<td>Application of silver nanoparticles as efficient catalyst in the oxidation of alcohol and ipso-hydroxylation of arylboronic acids</td>
<td>11</td>
</tr>
<tr>
<td>2(a). Nanoparticles</td>
<td>11</td>
</tr>
<tr>
<td>2(b). Synthesis of metallic nanoparticles</td>
<td>11</td>
</tr>
<tr>
<td>2(c). Chemical and physical syntheses of metal nanoparticles</td>
<td>13</td>
</tr>
<tr>
<td>2(d). Bio-synthesis of metallic nanoparticles using microbes</td>
<td>13</td>
</tr>
<tr>
<td>2(e). Bio-synthesis of metallic nanoparticles using plants</td>
<td>14</td>
</tr>
</tbody>
</table>
2(f). Characterization of nanoparticles and associated molecules 16
2(g). Applications of silver nanoparticles 16
2(g).1. Silver nanoparticles in biomedicine 16
2(g).2. Silver nanoparticles in catalysis 17
2(h). Preparation of clay supported metal nanoparticles 18

Section 2.1 Synthesis of silver nanoparticle, characterisation and study of its antibacterial activity

2.1.1. Background 21
2.1.2. Results and Discussions 22
2.1.3. Study of antibacterial activity 27
2.1.4. Experimental section 28
2.1.4.1. Preparation of AgNO$_3$ solution 28
2.1.4.2. Preparation of leaf extract 28
2.1.4.3. Synthesis of AgNPs 29
2.1.4.4. Characterization of AgNPs 29

Section 2.2 Immobilization of silver nanoparticle over montmorillonite clay: Application as novel and efficient catalyst in the oxidation of alcohols in the presence of TBHP

2.2.1. Introduction and Background 31
2.2.1.1. Oxidation of alcohols catalyzed by transition metal complexes 31
2.2.2. Results and Discussion 36
2.2.3. Preparation of Montmorillonite Clay K-10 supported AgNPs 36
2.2.4. Optimization of the reaction variables 38
2.2.5. Recycling studies 41
2.2.6. Metal leaching test 42
2.2.7. Conclusion 43
2.2.8. Experimental Section 44
2.2.9. Analytical data of the prepared compounds 45

Section 2.3 Montmorillonite clay supported silver nanoparticle as a robust and recyclable catalyst for ipso-hydroxylation of arylboronic acid

2.3.1. Introduction 49
2.3.2. Recent developments in the ipso-hydroxylation of arylboronic acids 50
2.3.3. Heterogeneous catalytic system 51
2.3.4. Background 52
2.3.5. Results and Discussion 52
2.3.6. Conclusion 56
2.3.7. Experimental Section 57
   2.3.7.1. Instrumentations and Chemicals 57
   2.3.7.2. General procedure for the ipso-hydroxylation 58
   2.3.7.3. Analytical data of the purified products 59
2.3.8. References 63

Chapter 3 71-140

Development of mild and efficient protocol for palladium-catalyzed Suzuki-Miyaura coupling in aqueous media
Section 3.1 Palladium-imine-silica framework as a highly efficient and recyclable Suzuki-Miyaura catalyst in aqueous media

3.1.1. Introduction

3.1.2. Results and Discussion

3.1.2.1. Synthesis and Characterization

3.1.2.2. FT-IR, XRD, ICP-AES, SEM-EDX and EDS mapping analysis

3.1.2.3. N\textsubscript{2} Adsorption-Desorption isotherm

3.1.3. Pd@imine-SiO\textsubscript{2} catalyzed Suzuki-Miyaura cross-coupling reaction

3.1.3.1. Catalyst, base and solvent optimization

3.1.3.2. Substrate Scope

3.1.3.3. Large scale synthesis
Section 3.1.3.4. Distinguishing homogeneous or heterogeneous pathway

3.1.4. Conclusions

3.1.5. Experimental Section

3.1.5.1. Instrumentation and Chemicals

3.1.5.2. Catalyst preparation

3.1.5.3. Analytical data of the prepared biaryl derivatives

Section 3.2 Silica-supported bis-(NHC)-palladium(II) complex: an efficient and reusable catalyst for Suzuki-Miyaura cross-coupling reaction in aerobic aqueous media

3.2.1. Background

3.2.2. Results and Discussion

3.2.2.1. Synthesis and Characterisation of the Complex

3.2.3. Pd-NHC-CPTES@SiO$_2$ catalyzed Suzuki-Miyaura reaction

3.2.3.1. Catalyst Screening and Base-Solvent Optimization

3.2.3.2. Substrate Scope

3.2.3.3. Reusability Test

3.2.3.4. Theoretical Calculation

3.2.4. Conclusion

3.2.5. Experimental section

3.2.5.1. Instrumentation and Chemicals

3.2.5.2. Characterization data of the product

3.2.6. References
Chapter 4 141-164

Gallic acid derived palladium(0) nanoparticles as in situ-formed catalyst for Suzuki-Miyaura cross-coupling reaction in water

4.1. Background 141

4.2. Results and Discussion 142

4.2.1. Catalyst evaluation and optimization of the reaction conditions 142

4.2.2. Catalyst identification and characterization 144

4.2.3. Possible mechanism of catalyst formation 148

4.2.4. Scope and Limitations of Substrates 149

4.3. Catalyst Recycling 150

4.4. Conclusion 152

4.5. Experimental Section 152

4.5.1. Materials and Instrumentation 152

4.5.2. Catalytic Studies 152

4.5.3. Characterization data of the isolated 153

4.6. Reference 159

Chapter 5 165-188

Ligand-free heterogeneous Pd/C catalyzed O-arylation of nitroarene with phenols
5.1. Introduction

5.1.1. Metal-catalyzed C<sub>aryl</sub>-O bond forming cross-coupling reactions 166
5.1.2. O-Arylation of arylboronic acids with nitroarenes 166
5.1.3. O-Arylation of phenols with nitroarenes 168
5.1.4. Heterogeneous C-O coupling reaction 170

5.2. Background 172

5.3. Results and Discussion 173

5.3.1. Reaction optimization 173

5.4. Substrate Scope 176

5.5. Recyclability of Pd/C catalyst 177

5.6. Conclusion 179

5.7. Experimental Section 180

5.7. Analytical data of the prepared diaryl ether derivatives 181

5.8. References 185

Chapter 6 189-191

Conclusion and Summary

Copyright Permissions

List of Publications

List of Seminar/Conference attended and Paper presented

Reprints of Papers