Table of Contents

1. Introduction to Ionic Liquids.
 1.1 Classification of ILs
 1.1.1 Protic ILs
 1.1.2 Aprotic ILs
 1.1.3 Other subclasses
 1.2 Structure of ILs
 1.3 Crystal Lattice Structures
 1.4 Ion Pairs or Free ions
 1.5 Theoretical Methods
 1.6 Cation-anion Conformational Arrangements and Noncovalent Interactions

2. Overview of Electronic Structure Methods.
 2.1 Introduction
 2.2 The Schrödinger Equation
 2.3 Molecular Electron Density
 2.4 Hartree-Fock Theory
 2.5 The Thomas-Fermi Model
 2.6 Hohenberg and Kohn Theorems
 2.7 Kohn-Sham Theory
 2.8 Approximations to the Exchange-Correlation Energy Functionals
 2.8.1 Local Density Approximation (LDA)
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8.2</td>
<td>Generalized Gradient Approximation (GGA)</td>
<td>64</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Hybrid-Exchange Correlation Functionals</td>
<td>67</td>
</tr>
<tr>
<td>2.9</td>
<td>Geometry Optimization Methods</td>
<td>70</td>
</tr>
<tr>
<td>2.10</td>
<td>Basis Sets</td>
<td>72</td>
</tr>
<tr>
<td>2.11</td>
<td>Quantum Theory of Atoms and Molecules</td>
<td>74</td>
</tr>
<tr>
<td>2.12</td>
<td>Molecular Electrostatic Potential</td>
<td>77</td>
</tr>
<tr>
<td>2.13</td>
<td>Natural Bond Orbital Analyses</td>
<td>78</td>
</tr>
<tr>
<td>2.14</td>
<td>Vibrational Frequencies</td>
<td>79</td>
</tr>
<tr>
<td>2.15</td>
<td>NMR Chemical Shifts</td>
<td>82</td>
</tr>
<tr>
<td>3.0</td>
<td>Characterizing Ionic Liquids Derived from Amino Acid Cations and Their Ester Derivatives.</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>93</td>
</tr>
<tr>
<td>3.2</td>
<td>Methodology</td>
<td>95</td>
</tr>
<tr>
<td>3.3</td>
<td>Results and Discussion</td>
<td>96</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Structure and Binding Energies of [AA][NO₃] and [AAE][NO₃]</td>
<td>96</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Vibrational Frequencies</td>
<td>104</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Difference MED, QTAIM and NBO Analyses</td>
<td>107</td>
</tr>
<tr>
<td>3.3.4</td>
<td>¹H NMR Studies</td>
<td>110</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Structure Property Relationships with Melting Points, Decomposition Temperatures</td>
<td>111</td>
</tr>
<tr>
<td>3.4</td>
<td>Conclusions</td>
<td>113</td>
</tr>
</tbody>
</table>

4.1 Introduction

4.2 Methodology

4.3 Results and Discussion

4.3.1 ESP in Amino Acids, Ion Pairs and Higher Aggregates

4.3.2 Structures of Ion Pairs and their Aggregates

4.3.3 Binding Energies of Ion Pairs and Aggregates

4.3.4 Vibrational Frequencies in Ion Pairs

4.3.5 NBO Analyses

4.3.6 QTAIM Analyses and Charge Distributions

4.3.7 Frontier Orbitals in Ion Pairs

4.3.8 Binding Strengths and Glass Transition Temperatures (T_g)

4.4 Conclusions

5.1 Introduction

5.2 Methodology

5.3 Results and Discussion

5.3.1 Structure and Noncovalent Interactions

5.3.2 ¹H and ¹³C NMR

5.3.3 Spin-Spin Coupling Constants
5.3.4 Nucleus Independent Chemical Shifts 176
5.3.5 Infrared Spectra 181
5.4 Conclusions 183

6.1 Introduction 189
6.2 Computational Methods 192
6.3 Results and Discussion 195
 6.3.1 Electrostatic Potentials and Structure of Ion Pairs 195
 6.3.2 Electronic Structure of Mixed DSILs 199
 6.3.3 Effect of Dispersion Corrections on the Structure and Energies 208
 6.3.4 QTAIM and Noncovalent Interactions 213
 6.3.5 Infrared, 1H NMR and 13C NMR spectra 221
 6.3.6 Physicochemical Properties of New DSILs 223
6.4 Conclusions 225

7. Fluorine Functionalized Ionic Liquids in Green House Gas Absorption. 231
7.1 Introduction 233
7.2 Computational Method 237
 7.2.1 Molecular Electrostatic Potential and Ion Pair Structures of the ILs 237
 7.2.2 Conformational Search for CO$_2$ Binding Sites 237
7.3 Results and Discussion

7.3.1 Ion Pair Structures of [ETT][FEP] and [Hmim][FEP] 240

7.3.2 Electrostatic Potential Surfaces on [ETT][FEP] and [Hmim][FEP] Ion Pairs 242

7.3.3 Complexation of CO₂ with Individual [ETT⁺, [Hmim]⁺ Cations and [FEP⁻] Anion 245

7.3.4 Structures of [ETT][FEP].1CO₂ and [Hmim][FEP].1CO₂ Systems 247

7.3.5 Structures of [ETT][FEP].nCO₂ or [Hmim][FEP].nCO₂ Aggregates 250

7.3.6 Binding Energies in [ETT][FEP].nCO₂ and [Hmim][FEP].nCO₂ Systems 255

7.3.7 Noncovalent Interactions Reduced Density Gradient and Energy Decomposition Analyses 258

7.3.8 Vibrational Spectra 262

7.4 Conclusions 266

Appendices

I Abstract of the Thesis 272

II List of Publications 278

III Supporting Material for Chapter 3 284

IV Supporting Material for Chapter 4 298

V Supporting Material for Chapter 6 302

VII Supporting Material for Chapter 7 310