TABLE OF CONTENTS

Chapter 1: Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Diabetes Mellitus</td>
<td>01</td>
</tr>
<tr>
<td>1.2</td>
<td>Classification of DM</td>
<td>01</td>
</tr>
<tr>
<td>1.3</td>
<td>Epidemiology</td>
<td>02</td>
</tr>
<tr>
<td>1.4</td>
<td>Signs and symptoms</td>
<td>02</td>
</tr>
<tr>
<td>1.5</td>
<td>Diagnosis</td>
<td>03</td>
</tr>
<tr>
<td>1.6</td>
<td>Risk Factors</td>
<td>03</td>
</tr>
<tr>
<td>1.7</td>
<td>Pathogenesis of type 2 diabetes mellitus</td>
<td>04</td>
</tr>
<tr>
<td>1.7.1</td>
<td>Impaired insulin secretion</td>
<td>04</td>
</tr>
<tr>
<td>1.7.2</td>
<td>Insulin resistance</td>
<td>04</td>
</tr>
<tr>
<td>1.7.3</td>
<td>Increased hepatic glucose production</td>
<td>05</td>
</tr>
<tr>
<td>1.8</td>
<td>Complications of type 2 DM</td>
<td>06</td>
</tr>
<tr>
<td>1.8.1</td>
<td>Acute Complications</td>
<td>07</td>
</tr>
<tr>
<td>1.8.1.1</td>
<td>Diabetic ketoacidosis</td>
<td>07</td>
</tr>
<tr>
<td>1.8.2</td>
<td>Chronic Complications</td>
<td>08</td>
</tr>
<tr>
<td>1.8.2.1</td>
<td>Treatment of chronic complications</td>
<td>09</td>
</tr>
<tr>
<td>1.8.3</td>
<td>Insulin, its role in CNS and cognitive impairment</td>
<td>09</td>
</tr>
<tr>
<td>1.8.3.1</td>
<td>Effect of insulin resistance in brain</td>
<td>10</td>
</tr>
<tr>
<td>1.8.4</td>
<td>Type 2 DM and its association with cognitive decline</td>
<td>10</td>
</tr>
<tr>
<td>1.8.5</td>
<td>Pharmacology and management of diabetes mellitus</td>
<td>13</td>
</tr>
</tbody>
</table>
Chapter 2: Literature Survey

2.1 Herbal medicinal plants 16-19
2.2 Polyherbal formulations 20-22
2.3 Plants selected for the current study 22
 2.3.1 Plant profile of Casearia elliptica 22-24
 2.3.2 Plant profile of Cissus quadrangularis Linn 25-27
 2.3.3 Plant profile of Cyperus rotundus Linn 28-30
2.4 Rationale of the study 31-32

Chapter 3: Theoretical Analysis

3.1 Aim of the study 33
3.2 Objectives of the study 33
 3.2.1 Plan of Work 33
 3.2.1.1 Phase I - Collection, authentication and preliminary
 phytochemical screening 33
 3.2.1.2 Phase II – Acute toxicity studies and in vivo
 antidiabetic activity 34
 3.2.1.3 Phase III – In Vivo pharmacological activity of
 polyherbal formulation 34
 3.2.1.4 Phase IV – In Vitro studies 34
3.3 Chemicals used 35-37
3.4 Assay kits 37
3.5 Equipment 38

Chapter 4: Experimental Investigations

4.1 Collection, Authentication, Extraction, Storage and Preliminary 39-43
 phytochemical screening
 4.1.1 Collection of plant materials 39
 4.1.2 Authentication of plant materials 39
 4.1.3 Processing of extract and storage 39
 4.1.4 Determination of yield 40
4.1.5 Preliminary phytochemical analysis 40-43

4.2 Pharmacological activity 43

4.2.1 Experimental studies 43

4.2.2 Approval of the study 44

4.2.3 Acute toxicity studies 44

4.2.4 Oral glucose tolerance test 44

4.2.5 Antidiabetic activity of selected plant extracts 45

4.2.5.1 Induction of diabetes mellitus 45

4.2.5.2 Treatment schedule 45

4.2.5.3 Parameters monitored 46

4.2.6 Polyherbal formulation 46

4.2.6.1 Preparation of polyherbal formulation 46

4.2.6.2 Oral glucose tolerance test of PHF 46

4.2.6.3 Antidiabetic activity of PHF 46

4.2.6.3.1 Treatment schedule 46

4.2.6.3.2 Parameters monitored 47

4.2.6.4 Insulin resistance and cognitive impairment studies 47

4.2.6.4.1 Induction of insulin resistance and cognitive impairment 47

4.2.6.4.2 Treatment schedule 47

4.2.6.4.3 Parameters monitored 48

4.3 Methodology for parameters assessed 48

4.3.1 Biochemical estimations 48-56

4.3.2 Behavioural parameters 57-58

4.3.3 Histological analysis 58

4.4 In Vitro studies 58

4.4.1 Determination of total phenol content 58

4.4.2 Determination of total flavonoid content 58-59

4.4.3 α-glucosidase inhibitory assay 59

4.4.4 α-amylase inhibitory assay 59
4.4.5 SH-SY5Y cell line studies 60
 4.4.5.1 Cell viability analysis (MTT Assay) 60
 4.4.5.2 Measurement of hyperglycemia induced ROS 61
4.5 Statistical analysis 61

Chapter 5: Experimental Results
5.1 Percentage yield of extracts 62
5.2 Preliminary phytochemical analysis 62
5.3 Pharmacological studies 63
 5.3.1 Acute toxicity studies 64
 5.3.2 Oral glucose tolerance test 65-66
 5.3.3 Antidiabetic activity of extracts 67-82
 5.3.4 Polyherbal formulation 82
 5.3.4.1 Preparation of PHF 82-86
 5.3.4.2 Antidiabetic activity of PHF 87-93
 5.3.4.3 Dexamethasone induced insulin resistance and cognitive impairment model 93-102
 5.3.4.5 In Vitro studies 103
 5.3.4.5.1 Effect of extracts and PHF on total phenol content 103
 5.3.4.5.2 Effect of extracts and PHF on total flavonoid content 104
 5.3.4.5.3 Effect of extracts and PHF on α-glucosidase & α- amylase 105
 5.3.4.5.4 IC50 value of STZ on cell viability (MTT assay) 105-106
 5.3.4.5.5 Effect of extracts and PHF on STZ induced cell death in MTT assay (SH-SY5Y neuronal cells) 106-107
 5.3.4.5.6 Effect of Extracts and PHF on ROS on SH-SY5Y neuronal cells 108-112
Chapter 6: Discussion of Results

6.1 Discussion of results 113-121

Chapter 7: Summary, Conclusion and Recommendations

7.1 Summary 122-123
7.2 Conclusion 123
7.3 Recommendations 123

References 124-140

Index 141

List of Publications 142