Acknowledgement

First and foremost, I offer my sincere gratitude to my guide and mentor, Dr. Premila Abraham, who supported me throughout my research with her patience and knowledge. I attribute the level of my doctoral degree to her encouragement and effort without which this thesis would not have taken its shape.

I am grateful to my co-guide Dr. Dhayakani Selvakumar for her constant support during the research period. I also express my heartfelt gratitude to Dr. Molly Jacob for her constant support and encouragement. I also thank Dr. Indirani, Dr. Bina Isaac, and Dr. Suganthy Rabi for their assistance in light microscopic studies, valuable opinions and suggestions.

In addition to these people, there are several others who stood as a support during the past five years of my doctoral work. I take immense pleasure in conveying my heartfelt gratitude to all of them.

I would like to thank Hemalatha R, and Kasthuri N who were of continuous support to me during the extensive hours spent in the laboratory over the past five years. I would like to express my sincere thanks to my seniors Satish, Nagesh, Jayakumar, Amjad and my colleagues Arumugam, Joe, Gautham, Subhosmito, and Abitha. I would also like to extend my gratitude to Rajdeep, Soosai, Rajesh, Desigamani, Bondu, Sridhar, Isaac, Lalu, Revathy and Punitha for their kind assistance.

I thank the Council of Scientific and Industrial Research, New Delhi, India for the confidence they had in me to extend the financial support to carry out the research work.

I am greatly indebted to the Principal, Christian Medical College, Vellore and The Tamil Nadu Dr. M.G.R Medical University, Chennai for giving me an opportunity to pursue my doctoral studies in their institution.

I would be failing in my duty if I do not thank my parents, my wife Anusha and all my family members who directly or indirectly are involved in making this thesis a success. They have been a great source of encouragement and support to me. This thesis is a result of all the minute sacrifices they made in order to see that I complete my work in time.

Last, but not the least, I would like to acknowledge the contribution of the animals on whom I have carried out all my experiments. This thesis is a result of the sacrifice of their lives.
LIST OF ABBREVIATIONS

ALP Alkaline phosphatase
ADP Adenosine diphosphate
ATP Adenosine triphosphate
BSA Bovine serum albumin
DTT Dithiothreitol
DTNB 5, 5′ – Dithiobis (2-nitrobenzoic acid)
DMSO Dimethyl sulphoxide
EDTA Ethylenediamine tetra acetic acid
ETC Electron transport chain
GSH Reduced glutathione
GSSG Oxidized glutathione
iNOS Inducible nitric oxide synthase
MDA Malondialdehyde
MPO Myeloperoxidase
MPTP Mitochondrial permeability transition pore
MTX Methotrexate
MTT 3-(4, 5-dimethylthiazole-2yl)-2, 5-diphenyl tetrazolium

NAD/NADP Nicotinamide adenine dinucleotide/ Nicotinamide adenine dinucleotide phosphate (oxidized form)

NADH/ NADPH Nicotinamide adenine dinucleotide/ Nicotinamide adenine dinucleotide phosphate (reduced form)

NO Nitric oxide

NOS Nitric oxide synthase

PARP Poly– ADP ribose polymerase

RCR Respiratory control ratio

ROS Reactive oxygen species

RNS Reactive nitrogen species

SOD Superoxide dismutase

SDS Sodium dodecyl sulphate

XO Xanthine oxidase
CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>AIMS AND OBJECTIVES</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>REVIEW OF LITERATURE</td>
<td>5</td>
</tr>
<tr>
<td>4.</td>
<td>PLAN OF WORK</td>
<td>46</td>
</tr>
<tr>
<td>5.</td>
<td>MATERIALS AND METHODS</td>
<td>48</td>
</tr>
<tr>
<td>6.</td>
<td>RESULTS, ANALYSIS AND DISCUSSION</td>
<td></td>
</tr>
</tbody>
</table>

Study 1. Light microscopic structural changes in the small intestine of rat after treatment with methotrexate. 68

Study 2. Role of reactive oxygen species and neutrophil infiltration in methotrexate induced small intestinal damage. 76

Study 3. Role of reactive nitrogen species in methotrexate induced small intestinal damage. 85

Study 4. Effect of methotrexate on mitochondrial structure and function of enterocytes. 99

Study 5. Effect of pretreatment with melatonin on methotrexate induced oxidative stress, nitrosative stress and small intestinal damage. 113
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>SUMMARY AND CONCLUSIONS</td>
<td>124</td>
</tr>
<tr>
<td>8.</td>
<td>SCOPE FOR FURTHER STUDY</td>
<td>129</td>
</tr>
<tr>
<td>9.</td>
<td>BIBLIOGRAPHY</td>
<td>130</td>
</tr>
<tr>
<td>10.</td>
<td>PUBLICATIONS</td>
<td>131</td>
</tr>
</tbody>
</table>