DECLARATION

I declare that the thesis entitled “LANDSLIDE SUSCEPTIBILITY MAPPING USING GIS BASED STATISTICAL METHODS IN COONOOR RIVER MACRO-WATERSHED IN NILGIRIS MOUNTAINS, TAMIL NADU, INDIA” submitted by me for the Degree of Doctor of Philosophy is the record of research work carried out by me during the period from February 2009 to January, 2018 under the guidance of Dr.V.RAM MOHAN, Professor, Former Faculty, Department of Geology, University of Madras, and has not formed the basis for the award of any Degree, Diploma, Associateship, Fellowship, Title at this University or any other University or other similar institution of Higher Learning.

Date:

Signature of the Candidate

Station: Chennai

(S. BACKIA RAJ)
ACKNOWLEDGEMENT

First of all, I express my profound gratitude and sincere, heartfelt thanks to my Supervisor, Dr.V.Ram Mohan, Professor, former faculty, Department of Geology, University of Madras, Chennai, for his valuable guidance, remarkable patience and perpetual involvement throughout the period of this study. I also express my thanks to him for his critical review of my thesis and priceless suggestions.

I wish to express my sincere thanks and gratitude to Dr.S.Ramasamy, Professor and Head, Department of Geology, University of Madras, for providing the best of lab facilities to carry out my research work successfully and for encouraging me in each and every way during my course of study.

I am grateful to Dr.S.M.Hussain, Associate Professor, Dr.M.Suresh Gandhi, Assistant Professor and Dr.P.Saravanan, Assistant Professor Department of Geology, University of Madras, for their constant encouragement during this work.

I express my earnest thanks to the Dr.S.P.Mohan, Professor and Former Head of Department, Department of Geology, University of Madras, Chennai for their constant support.

I express my sincere thanks to Mr.S.Bhaskaran, Former Deputy Director, Mr.R.Gopi Krishnan, Assistant Director, Geotechnical cell, Coonoor and Mr.A. Marshal Charles, Field Assistant, Geotechnical Cell, Coonoor for their guidance during the field investigation and for providing past landslide data.

I express my sincere thanks Dr.S.Mahalingam, computer programmer, Remote Sensing and GIS centre, Institute of Water studies, Taramani, Chennai for rendering constructive suggestions with regard to various facets of my research.

I also very much thankful to Dr.P.Muthukumar, Assistant Professor, Gandhigram Rural University, and Dr.A.Ramachandran, Post Doctoral Researcher (UGC), Department of Geology, Anna University, Chennai, those who helped me throughout my project.
My heartful thanks to Mr. Rajkumar, Deputy Hydrogeologist, Mr. Sathiymoorthy, Deputy Hydrogeologist, Dr. M. Kamaraj, Assistant Hydrogeologist, Tamilnadu Water Supply and Drainage Board, Chennai for their valuable support in my research work.

My wholehearted gratitude goes to my dearest friends Mr. P. Ramamoorthy, Dr. K. Kasilingam, Mr. S. P. Senthil Vinayagam, Dr. T. Naveen Raj, Dr. K. Elumalai, Dr. P. Loganathan, Dr. K. Velmurugan for their invaluable help in various capacities during my tenure as a friend.

My sincere thanks to all Research Scholars, M.Phil, scholars and M.Sc. Students, Department of Geology, University of Madras, for their willing support and making my days more pleasant in the department.

Finally I graciously remember and thank the authorities of the University of Madras for administrative and other supports for completion of this piece of research work.

Last but not the least, my utmost dedication goes to my loving Son N.B. Dev Avaneeshan, my loving Daughter N.B. Sudiksha and mother Mrs. S. Sundari, Father Mr. R. Shanmugam, brother and sisters, my loving and caring wife S.P. Nirmala Devi for their abundant love and unconditional support throughout my life.

Above all, I am thankful to Sri Ramana Maharishi, the Almighty for blessing a gracious atmosphere and health, which helped me to complete this research work successfully.

(BACKIA RAJ. S)
ABSTRACT

Landslides is one of the major natural disasters that are frequently occurring in the Nilgiris mountains causing loss of lives, damaging property and affecting the community by distracting the transport communication system during every monsoon periods.

Landslides have been reported in Nilgiris from the past but the numbers are few with longer intervals. Though, anthropogenic activities such as deforestation, urbanisation and huge expansion of infrastructure cause landslide events on large scale in two years on 1978 and 1979. While, the landslide event of 1978 and 1979 had a lesser impact on the community as majority of over 350 landslides have occurred in tea estates and vegetable gardens, the subsequent events in the years 1990, 1991 and 1993 and 2009 have severely affected the settlements, destroyed the private and public properties and buried so many people. Hence, it has become timely necessary to investigate and identify the landslide susceptibility zones in the Nilgiris.

The Coonoor macro-watershed in Nilgiris Mountains with a total extent of 134.9 km² is one of the worst affected part in the above informed years. In this context, this Coonoor macro watershed was selected as a study area for the detailed investigation of the landslides and to prepare landslide susceptibility maps (LSM). The area falls in parts of Bhavani river sub-basins and it is also one of the significant zone in the view of human intervention in the form of commercial activities with tea and coffee plantations. The present study focused to identify the landslides susceptibility zonation map for the Coonor macro watershed in GIS environment using probabilistic methods.

The basic requirement of the study is the landslide inventory map which shows the areas where slope failures have taken place in the past and the causative parameters. The details of the landslides occurrences were collected from the
Two methods, viz., the Frequency ratio (FR) and Weights of Evidence (WofE) were used in the assessment of landslide susceptibility. In the first method the frequency ratio is obtained by dividing the percentage of landslide in the sub-variable by the percentage of the area occupied by the sub-variable in the total area. If the FR value is more than 1, the subvariable showing positive sign for landslide occurrence and if the FR value of a sub-variable is less than 1, it is not causing landslide. In WofE method, positive and negative weights are calculated using the landslide inventory map. Positive weight indicates that the predictable variable is present and a negative weight is a measure of absence of the predictive variable. The difference between the weights is the contrast, reflects the overall spatial association between the predictable variable and the landslides. The FR values calculated are assigned to the sub-variables and summation of the values gives the Landslide susceptibility index (LSI) which is used to prepare the LSM. The LSM shows areas with high LSI as areas of high landslide susceptibility and areas with low values have low susceptibility. Similarly LSM is also prepared assigning the contrast values calculated using WofE method. For carryout the above two models only 75 % of landslides were taken and the remaining 25 % of the landslides occurrence were utilized for validation.

The numbers of landslides in study area are 102 and validation is carried out for the watershed. The final LSM was prepared by recalculating the FR using all the 102 landslides. The landslide inventory map was overlaid on the final LSM and it was found that 79.22% of the landslides fall in high and very high landslide susceptibility zones and suggesting that the LSM can be used to predict landslide prone areas.
The predictability of the FR and WofE methods are assessed based on the overlay analysis of landslides over the LSM prepared by each method. The comparison shows that the FR and WofE method shows almost same result.

Attempt to validate the LSM using the landslides that have taken place in 2009 was also made. The overlay analysis of sixty seven landslides that have taken place during 2009 was made and it was found that thirty six landslide falls in high and very high landslide susceptibility classes. Though this can be taken as a almost successful prediction, the study of the landslides has shown that the widening of ghat road has played a major role in causing landslides.

The study is the first attempt to prepare a large scale landslide susceptibility map and the usefulness of GIS in assessment of landslide susceptibility using statistical method demonstrated. Since, the methods have high predictability.
LIST OF TABLES

Table 1.1 Past Landslide events in India
Table 4.1 Details of the data types used in this study area and sources
Table 6.1 Frequency Ratio calculated for Slope angle
Table 6.2 Aspect
Table 6.3 Drainage density
Table 6.4 Distance from Drainage
Table 6.5 Lineament density
Table 6.6 Distance from Lineament
Table 6.7 Geomorphology
Table 6.8 Land Use
Table 6.9 Distance from Road
Table 6.10 Soil
Table 6.11 Showing with number and percentage of landslides, area and landslide density
Table 6.12 Variation in Frequency ratios when 75% of the slides and 100% of the slides are used
Table 6.13 Showing with number and percentage of landslides, area and landslide density in the LSM prepared using all the 102 landslides
Table 6.14 Weights of Evidence based Landslide weightages of Slope
Table 6.15 Weights of Evidence based Landslide weightages of Slope Aspect
Table 6.16 Weights of Evidence based Landslide weightages of Drainage Density
Table 6.17 Weights of Evidence based Landslide weightages of Distance from Drainage
Table 6.18 Weights of Evidence based Landslide weightages of Lineament density
Table 6.19 Weights of Evidence based Landslide weightages of Geomorphology
Table 6.20 Weights of Evidence based Landslide weightages of Distance from lineament
Table 6.21 Weights of Evidence based Landslide weightages of soil
Table 6.22 Weights of Evidence based Landslide weightages of Land use and Land Cover
Table 6.23 Weights of Evidence based Landslide weightages of Distance from Road
Table 6.24 Weight of Evidence values calculated for the generation of final LSM using all landslides
Table 6.25 Summary of result of overlay analysis of landslide inventory on LSM of (Natural Break) by WofE method.
Table 7.1 Comparison of results by overlay analysis between FR and WofE method.
Table 7.2 Rainfall details
Table 7.3 Number and percentage of landslides (2009) falling in various landslide susceptibility Classes in LSM
LIST OF FIGURES

Fig. 3.1 Three dimensional model showing the relief of Nilgiris. The western part is characterized by lower relief and on the other hand the eastern and southeastern part is endowed with steeper slopes and higher elevation. UPS – Uthagamandalam Planation Surface; CPS – Coonoor Planation Surface; KPS – Kothagiri Planation Surface; GPS – Gudalur Planation Surface.

Fig. 3.2 Study area showing important settlements and roads
Fig. 3.3 Geology map of the study area
Fig. 3.4 Geomorphology map of the study area
Fig. 3.5 Drainage map of the study area
Fig. 3.6 Coonoor watershed flow diagram of the study area
Fig. 3.7 Soil map of the study area
Fig. 3.8 Lineament map of the study area
Fig. 3.9 Land use and Land cover map of the study area
Fig. 4.1 Landslide locations of the study area with 102 landslide point.
Fig. 4.2 The methodological for Frequency Ratio method
Fig. 4.3 The methodological for Weight of Evidence method
Fig. 4.4 Brief methodology of the present study
Fig. 5.1 Landslide Inventory map of the Watershed overlaid on colour coded elevation image
Fig. 5.2 Landslide location map of the Watersheds
Fig. 5.3 Slope Map of the watersheds
Fig. 5.4 The percentage of slope classes in the watersheds
Fig. 5.5 Slope aspect map of the study area
Fig. 5.6 Percentage of landslides and area in each aspect class
Fig. 5.7 Drainage density map of the study area
Fig. 5.8 Percentage of landslides and area in each drainage density class
Fig. 5.9 Distance to Drainage map of the study area
Fig. 5.10 Percentage of landslides and area in each distance from drainage class
Fig. 5.11 Lineament density map of the study area
Fig. 5.12 Percentage of landslides and area in each lineament density class
Fig. 5.13 Distance to lineament
Fig. 5.14 Percentage of distance from lineament classes in the watersheds
Fig. 5.15 Geomorphology map of the watersheds
Fig. 5.16 Percentage of landslides and area in each geomorphology class
Fig. 5.17 Soil map of the watersheds
Fig. 5.18 Percentage of landslides and area in each soil class
Fig. 5.19 Percentage of landslides and area in each Land Use class
Fig. 5.20 Percentage of landslides and area in each Land Use class
Fig. 5.21 Distance to Road Map of the Watersheds
Fig. 5.22 Percentage of Distance to road classes in the watershed
Fig. 6.1a Causative factors reclassified based on FR
Fig. 6.1b Causative factors reclassified based on FR
Fig. 6.1c Causative factors reclassified based on FR
Fig. 6.2 Landslide susceptibility map based on 75% landslides and remaining 25% landslides overlaid.
Fig. 6.3 Map showing the Frequency Ratio- Landslide Susceptibility Mapping
Fig. 6.4a Causative factors reclassified based on WofE
Fig. 6.4b Causative factors reclassified based on WofE
Fig. 6.4c Causative factors reclassified based on WofE
Fig. 6.5 Landslide Susceptibility Map based on WofE method
Fig. 6.6 Percentages of landslides between FR and WofE method
Fig. 7.1. 2009 landslides overlaid on LSM prepared based on the landslides of 1978 and 1979.
CONTENTS

Declaration by the Candidate
Certificate from the Supervisor
Acknowledgements
List of Figures
List of Tables
Abstract

CHAPTER-1 INTRODUCTION

1.1 General 1
1.2 Background of the study 4
1.3 Causes of Landslides 5
 1.3.1 Natural causes 5
 1.3.1.1 Gravity and Geological factors: 5
 1.3.1.2 Heavy rainfall and wave: 6
 1.3.1.3 Fire and Earthquakes: 6
 1.3.1.4 Volcanoes: 7
 1.3.2 Anthropogenic 7
1.4 landslide hazard in India 7
 1.4.1 Landslide occurrences in India 8
1.5 Objectives and scope of the study 13

CHAPTER -2 LITERATURE REVIEW

2.1 Purposes for writing a literature review 16
2.2 Landslide identification and mapping 16
2.3 Landslide Susceptibility Zonation 18
2.4 Qualitative Landslide Assessment 20
2.5 Quantitative Landslide risk Assessment 22
2.6 Vulnerability Assessment 24
2.7 Supervised Classification 25
2.8 Statistical Methods 26
 2.8.1 Bivariate and Multivariate statistical methods 26
 2.8.2 Frequency Ratio Method 28
 2.8.3 Weight of Evidence method 30
CHAPTER-3 STUDY AREA

3.1 General Description 34
3.2 Topography 37
3.3 Report of the Landslides in Nilgiris 38
3.4 Study Area 41
3.5 Climate and Rainfall 43
3.6 Geology 44
 3.6.1 Charnockite 44
 3.6.2 Older Supracrustal rocks 45
 3.6.3. Dolerite 46
3.7 Geomorphology 47
3.8 Drainage 48
3.9 Soil Types 51
3.10 Lineaments 52
3.11 Land use and land cover 54

CHAPTER-4 METHODOLOGY

4.1 Introduction 56
4.2 Landslide Susceptibility (LS) mapping 57
4.3 Collection of Data 57
4.4 Survey of India Toposheets and Satellite image 58
4.5 Landslide Inventory Map 59
4.6 The thematic maps that were prepared in ArcGIS software are as follows 61
 4.6.1 Slope Map 61
 4.6.2 Aspect Map 62
 4.6.3 Drainage Density Map 62
 4.6.4 Distances from Drainage Maps 63
 4.6.5 Soil Map 63
 4.6.6 Geology Map 63
 4.6.7 Geomorphology Map 63
 4.6.8 Lineament density and Distance from Lineament Map 64
 4.6.9 Land use/Land cover map 64
4.7 Analysis 64
 4.7.1 Frequency Ratio method 65
CHAPTER-5 DATA PREPARATION

5.1 General 72
5.2 Landslide Inventory Map 73
5.3 Landslide influencing Factors 76
 5.3.1 Slope 76
 5.3.2 Aspect 77
 5.3.3 Drainage Density 80
 5.3.4 Distance from drainage 82
 5.3.5 Lineament Density 84
 5.3.6 Distance from Lineament 87
 5.3.7 Geomorphology 89
 5.3.8 Soil Type 91
 5.3.9 Land use / Land Cover 93
 5.3.10 Distance from Road 96

CHAPTER-6 STATISTICAL ANALYSIS

6.1 Introduction 98
6.2 Statistical analysis and Interpretation 98
6.3 Frequency Ratio method 99
 6.3.1 Slope 99
 6.3.2 Aspect 100
 6.3.3 Drainage Density 101
 6.3.4 Distance from Drainage 102
 6.3.5 Lineament Density 103
 6.3.6 Distance from Lineament 104
 6.3.7 Geomorphology 105
 6.3.8 Land Use 106
 6.3.9 Distance from Road 108
 6.3.10 Soil 109
 6.3.11 Landslide Susceptibility Index 110
 6.3.12 Calculation of Frequency Ratio (FR) for final LSM 113
6.4. Weights of Evidence Based LSM Mapping 117
 6.4.1 Methodology 119
 6.4.2 Worked out of WofE based on weightages to Terrain-Systems 120
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.2.1 Slope</td>
<td>120</td>
</tr>
<tr>
<td>6.4.2.2 Aspect</td>
<td>121</td>
</tr>
<tr>
<td>6.4.2.3 Drainage Density</td>
<td>122</td>
</tr>
<tr>
<td>6.4.2.4 Distance from drainage</td>
<td>123</td>
</tr>
<tr>
<td>6.4.2.5 Lineament Density</td>
<td>124</td>
</tr>
<tr>
<td>6.4.2.6 Geomorphology</td>
<td>124</td>
</tr>
<tr>
<td>6.4.2.7 Distance from Lineament</td>
<td>125</td>
</tr>
<tr>
<td>6.4.2.8 Soil</td>
<td>126</td>
</tr>
<tr>
<td>6.4.2.9 Land Use / Land Cover</td>
<td>127</td>
</tr>
<tr>
<td>6.4.2.10 Distance from Road</td>
<td>128</td>
</tr>
<tr>
<td>6.4.3 Weight of Evidence method based LSM</td>
<td>129</td>
</tr>
<tr>
<td>6.4.4 Generation of LSM using all the landslides</td>
<td>130</td>
</tr>
<tr>
<td>6.5 Comparison between Frequency Ratio and WofE methods</td>
<td>137</td>
</tr>
</tbody>
</table>

CHAPTER-7

DISCUSSION AND CONCLUSION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>138</td>
</tr>
<tr>
<td>7.2 Statistical Analysis</td>
<td>139</td>
</tr>
<tr>
<td>7.3 Method of selection</td>
<td>140</td>
</tr>
<tr>
<td>7.3.1 Susceptibility assessment using Frequency Ratio (FR) method</td>
<td>140</td>
</tr>
<tr>
<td>7.3.2 Weight of Evidence (WofE) method and validation</td>
<td>141</td>
</tr>
<tr>
<td>7.4 Comparison between Frequency Ratio and Weight of Evidence method</td>
<td>141</td>
</tr>
<tr>
<td>7.5 Landslides in 2009</td>
<td>142</td>
</tr>
<tr>
<td>7.6 LSM and Validation</td>
<td>144</td>
</tr>
<tr>
<td>Conclusion</td>
<td>146</td>
</tr>
</tbody>
</table>

References

i – xxxiii

Publication