List of Figures

Figure 1.1. Forces influencing charged particle during electrophoresis3

Figure 1.2. The combination of acrylamide and bis-acrylamide for the synthesis of Polyacrylamide gel matrix...5

Figure 1.3. Jablonski diagram explaining the phenomenon of photoluminescence.......8

Figure 1.4. Absorption (A) and Emission (E) spectra of phenylalanine, tyrosine and tryptophan (Lakowicz 2009)...11

Figure 2.1. Experimental block diagram of laser induced fluorescence setup..........24

Figure 2.2. Block diagram showing the laser pulse, laser delay, and spectrograph delay spectrograph width...25

Figure 2.3. Standardization of spectrograph width for laser delays of (A) 400, (B) 375 and (C) 350 µs...25

Figure 2.4: Standardization of spectrograph delay for laser delays of (A) 400, (B) 375 and (C) 350 µs...26

Figure 2.5. Block diagram of laser induced fluorescence (LIF) setup with automated micro-controlled X-Y translational stage for recording fluorescence from PAGE gels. 1, 2, 3 in the figure represent lens, filter, lens arrangement.................................33

Figure 2.6. Micro Controlled Automated X-Y Translational Stage Setup for recording of Fluorescence of Proteins in PAGE and in 96 well plates.................................34

Figure 2.7. Illustration of the flowchart of spectral processing and data entry for the development of PAGE fingerprint...40
Figure 2.8. (a) One and two-dimensional electrophoresis followed by washing of the PAGE gel with distilled water...44

Figure 2.8. (b) Placing the one and two dimensional PAGE gel on automated X-Y microcontrolled translational stage and recording of autofluorescence of protein spots..45

Figure 2.8. (c) Image illustrating, (left side) fixing and CBB staining of the gel followed destining and image collection, (right side) recorded fluorescence was processed and provided to the Matlab workspace in the form of excel sheets and development of autofluorescence based PAGE fingerprint..46

Figure 3.1. Human Serum Albumin (HSA) showing Tryptophan residue (Red spheres), Tyrosine residues (Green sticks), Helix (Spiral), Loops (Threads). Reference-(PDB ID-1BJ5)..49

Figure 3.2. A picture showing the distance from hydroxyphenyl ring of 18 tyrosine residues to the indole ring of single tryptophan residue in HSA..49

Figure 3.3. Amino acids around the 10 Å radius of tryptophan residue in HSA. [Tryptophan (blue sticks), amino acids within the radius of 10 Å (magenta sticks), amino acids immediately outside the 10 Å radius highlighted in red color].........................51

Figure 3.4. Autofluorescence properties of HSA under denaturation with urea, (A) Emission maxima, (B) Emission intensity and under denaturation with GnHCl, (C) Emission maxima, (D) Emission intensity...52

Figure 3.5. Autofluorescence profiles of HSA-Urea mixture at every 5 nm intervals of 260-285 nm excitations...53

Figure 3.6. Autofluorescence profiles of HSA-GnHCl mixture at every 5 nm intervals of 260-285 nm excitations...54

Figure 3.7. Fluorescence of HSA-ANS complexes, (A) Urea denatured and (B) GnHCl denatured..55
Figure 3.8. Circular dichroism spectra of HSA denatured with, (A) Urea and (B) GnHCl..55

Figure 3.9. Comparison of native HSA, pure tyrosine and tryptophan fluorescence with denatured HSA fluorescence under various denaturation conditions, (A) 9 M Urea, (B) 6 M GnHCl and (C) HSA digested with trypsin. (D) Represents normalized autofluorescence intensity (with respect to tryptophan peak) of native, 9 M urea denatured, 6 M GnHCl denatured and trypsin digested HSA showing tyrosine emission..57

Figure 4.1. Structure of proteins showing helix (spiral), turn (thread), tryptophan residues (blue color beads) and tyrosine residues (white color sticks and in BSA white color beads) (A) BSA, (B) Trypsin, (C) Lysozyme, (D) Carbonic anhydrase and (E) RNase A..64

Figure 4.2. Effects of acrylamide on the fluorescence properties of proteins (A) HSA, (B) BSA, (C) Trypsin, (D) Lysozyme, (E) RNase A and (F) Carbonic anhydrase..67

Figure 4.3. Effects of SDS denaturant on the fluorescence properties of (A) BSA, (B) HSA, (C) Lysozyme, (D) RNase-A, (E) Trypsin and (F) Carbonic anhydrase [Inset of (A) represent normalized spectra of SDS denatured BSA whereas inset of (E) represent normalized spectra of native and SDS denatured Trypsin]...68

Figure 4.4. Effects of SDS plus thermal denaturation on the fluorescence properties of (A) BSA, (B) HSA, (C) Lysozyme, (D) RNase-A, (E) Trypsin, and (F) Carbonic anhydrase. [inset of (E) represent normalized spectra of native and SDS plus thermal denatured Trypsin]...70

Figure 4.5. Autofluorescence of native and denatured RNase A at different concentrations of SDS (0.125%, 0.25%, 0.5%, 1.0%, 1.5% and 2.0%) with sequential excitations ranging from 260-295nm at an interval of 5 nm...71
Figure 4.6. Autofluorescence of native and denatured HSA at different concentrations of SDS (0.125%, 0.25%, 0.5%, 1.0%, 1.5% and 2.0%) with sequential excitations ranging from 260-295nm at an interval of 5 nm..72

Figure 4.7. Autofluorescence of native and denatured BSA at different concentrations of SDS (0.125%, 0.25%, 0.5%, 1.0%, 1.5% and 2.0%) with sequential excitations ranging from 260-295 nm at an interval of 5 nm..73

Figure 4.8. Autofluorescence of native and denatured Trypsin at different concentrations of SDS (0.125%, 0.25%, 0.5%, 1.0%, 1.5% and 2.0%) with sequential excitations ranging from 260-295 nm at an interval of 5 nm..74

Figure 4.9. Autofluorescence of native and denatured Lysozyme at different concentrations of SDS (0.125%, 0.25%, 0.5%, 1.0%, 1.5% and 2.0%) with sequential excitations ranging from 260-295 nm at an interval of 5 nm..75

Figure 4.10. Autofluorescence of native and denatured Bovine Carbonic anhydrase at different concentrations of SDS (0.125%, 0.25%, 0.5%, 1.0%, 1.5% and 2.0%) with sequential excitations ranging from 260-295 nm at an interval of 5 nm. The peak observed at 370 to 375 nm in the figure is an artifact due to instrumental error............76

Figure 4.11. Effects of CHAPS on the fluorescence properties of (A) BSA, (B) HSA, (C) Lysozyme, (D) RNase-A, (E) Trypsin and (F) Carbonic anhydrase...77

Figure 4.12. Effects of SDS plus BME plus thermal denaturation on the fluorescence properties of (A) BSA, (B) HSA, (C) Lysozyme, (D) RNase-A, (E) Trypsin and (F) Carbonic anhydrase. [Inset of (A, B) represent normalized spectra of SDS plus BME plus thermally denatured BSA and HSA whereas inset of (D, E) represent normalized spectra of native and SDS plus BME plus thermally denatured RNase-A and Trypsin].............78

Figure 4.13. Effects of SDS plus DTT induced denaturation on the fluorescence properties of (A) BSA, (B) HSA, (C) Lysozyme, (D) RNase-A, (E) Trypsin and (F) Carbonic anhydrase. [Inset of (E, F) represent normalized spectra of SDS plus DTT plus thermally denatured Trypsin and Carbinic anhydrase]...80
Figure 4.14. Effects of SDS plus TCEP plus thermal denaturation on the fluorescence properties of (A) BSA, (B) HSA, (C) Lysozyme, (D) RNase-A, (E) Trypsin and (F) Carbonic anhydrase. [Inset of (C, E and F) represent normalized spectra of native and SDS plus TCEP denatured Lysozyme and Trypsin]...81

Figure 4.15. Stern-Volmer plot showing autofluorescence quenching by BME, DTT and TCEP...82

Figure 4.16. Identification of BME induced radical ions formation by DCFDA fluorescence assay. A plot of concentration versus fluorescence intensity of DCFDA alone, BSA plus DCFDA, DCFDA plus BME and BSA plus DCFDA plus BME respectively..83

Figure 4.17. (A) Stern-Volmer plot of intrinsic fluorescence quenching of HSA with BME. (B) Stern Volmer plot for Fluorescence lifetime of HSA at increasing concentrations of BME, (C and D) Fluorescence decay of HSA at increasing concentrations of BME...84

Figure 4.18. (A) Stern-Volmer plot of intrinsic fluorescence quenching of HSA with DTT. (B) Fluorescence decay of HSA at increasing concentrations of DTT...............84

Figure 4.19. Fluorescence properties at Native, SDS, SDS+BME and SDS+TCEP denaturation conditions of (A) HSA, (B) BSA, (C) Lysozyme, (D) Trypsin, (E) RNase A and (F) Carbonic anhydrase. (G) Stern-Volmer plot of HSA with increasing concentrations of TCEP...85

Figure 4.20. Effects of urea induced denaturation on the fluorescence properties of (A) Trypsin, (B) CA, (C) BSA, (D) HSA, (E) Lysozyme and (F) RNase-A [Inset of A,B, C, D represent normalized spectra showing the wavelength shift in native and urea denatured condition. The downward arrow in C and D indicate the shoulder peak at 307nm corresponding to the fluorescence from tyrosine residues of the protein].................87
Figure 4.21. Effects of GnHCl induced denaturation on the fluorescence properties of (A) Trypsin, (B) CA, (C) BSA, (D) HSA, (E) Lysozyme and (F) RNase-A. [Inset of A, B, C, D and E represent normalized spectra showing the wavelength shift in native and GnHCl denatured condition. The downward arrow in C and D indicate the shoulder peak at 307 nm corresponding to the fluorescence from tyrosine residues of the protein]…88

Figure 4.22. Structure of proteins showing helix (spiral), sheet (arrow), turn (thread), tryptophan (beads) residues and tyrosine residues (skeleton) (A) Trypsin, (B) Carbonic anhydrase, (C)BSA, (D) HSA, (E) Lysozyme, (F) RNase-A………………………………………89

Figure 4.23. Linear fit of (A) 9 M urea and (B) 6 M GnHCl denatured proteins fluorescence intensity with increase in number of tryptophan residues among the proteins understudy……………………………………………………………………….90

Figure 4.24. Autofluorescence wavelength of native, urea (9 M) and GnHCl (6 M) denatured and trypsin digested proteins……………………………………………………………………….90

Figure 4.25. Stern-Volmer plot of HSA intrinsic fluorescence quenching by TEMED…91

Figure 5.1. Autofluorescence image of serial diluted BSA (5.0-0.019 µg) in PAGE collected using UV C excitation source………………………………………………………………………………..111

Figure 5.2. Autofluorescence image of BSA in different percentage of acrylamide PAGE collected using UV C excitation source…………………………………………………………..111

Figure 5.3. Autofluorescence spectra of carbonic anhydrase recorded from SDS-BME PAGE and its corresponding CBB stained gel…………………………………………………………..112

Figure 5.4. Autofluorescence based detection of BSA (concentrations: 10, 5, 2.5, 1, 0.5, 0.25, 0.125 and 0.062 µg) in basic native PAGE, (A) spectra (inset- spectra for concentrations 0.5 - 0.062 µg) and (B) corresponding CBB stained gel image………113
Figure 5.5. Autofluorescence based detection of lysozyme (concentrations: 5, 2.5, 1.25, 0.625, 0.312, 0.15, 0.078, 0.039 µg) in acidic native PAGE, (A) spectra (detected upto 0.15 µg concentration of lysozyme) and (B) corresponding CBB stained gel image...........113

Figure 5.6. Autofluorescence spectra of carbonic anhydrase recorded from SDS-TCEP PAGE (top) and its corresponding CBB stained gel (bottom).........................114

Figure 5.7. (A) Autofluorescence spectra of seven different proteins (HSA, BSA, Lysozyme, Carbonic anhydrase, RNase A, Cellulase and Trypsin) with equimolar concentrations in SDS-TCEP PAGE (inset showing the spread of emission peaks of proteins normalized to one) and (B) its corresponding CBB stained gel......................115

Figure 5.8. Block diagram of the PAGE fingerprint (distance on the y-axis represents the molecular weight of the proteins based on the MW ladder, distance on the X-axis represents the isoelectric point)...116

Figure 5.9. (A) SDS-TCEP PAGE of single and mixture of pure proteins (well 1- mixture 1, well 2 – HSA [control 1], well 3- Ovalbumin [control 2], well 4- CA [control 3], well 5- RNase A [control 4], well 6- BSA [control 5], well 7- Lysozyme [control 6], well 8- mixture 2) and (B) its corresponding PAGE fingerprint.................................120

Figure 5.10. (A) Showing autofluorescence intensity recorded from the SDS-TCEP PAGE in Y-axis and distance from top to bottom (mm) in X-axis. (B) PAGE fingerprint Ecoli cell lysate in one dimensional SDS-TCEP PAGE (C) its corresponding PAGE gel stained with CBB...122

Figure 5.11. (A) Showing autofluorescence intensity recorded from the SDS-TCEP PAGE in Y-axis and distance from top to bottom (mm) in X-axis. (B) The fluorescence intensities of all the protein spot were divided with 3.5 lack counts to decrease the background and highlight the high intensity fluorescent peaks. (C) 1D SDS-TCEP PAGE of HepG2 cell lysate (D) corresponding PAGE fingerprint.................................123
Figure 6.1. Autofluorescence based PAGE fingerprint of HepG2 cell lysate representing fluorescence intensity in grayscale (right) and the corresponding CBB stained image (left)..135

Figure 6.2. Autofluorescence based PAGE fingerprint of HepG2 cell lysate representing fluorescence peak emission in colors and symbols (right) and the corresponding CBB stained image (left)..136

Figure 6.3. 2D PAGE CBB stained picture (left) and its corresponding autofluorescence based fingerprint (right) of HepG2 cell lysate. The numbered spots from 1-19 in the 2D picture and its corresponding fingerprint are selected for mass spectrometric validation..137

Figure 6.4. (A) 2D PAGE gel of HEPG2 cell lysate stained with CBB, (B) 2D PAGE fingerprint of HEPG2 cell lysate whose intensity values were divided with 2, (C) 2D PAGE fingerprint of HEPG2 cell lysate whose intensity values were divided with 4 and (D) 2D PAGE fingerprint of HEPG2 cell lysate whose intensity values were divided with 6..138

Figure 6.5. (A) The 2D PAGE of HepG2 cell lysate, (B) 3D graph of autofluorescence intensity recorded from 2D-PAGE, (C) Mirror image of graph B..139

Figure 6.6. (A) The 2D PAGE of HepG2 cell lysate, (B) 3D graph of autofluorescence intensity recorded from 2D-PAGE (fluorescence intensity values were divided with 6), (C) Mirror image of graph B..139

Figure 6.7. Fluorescence based selection of protein spots in 2D PAGE fingerprint for (A) plotting mass spectrometric sequence coverage versus relative fluorescence intensity, (B) plotting tyrosine to tryptophan ratio versus fluorescence peak wavelength and (C) plotting relative fluorescence intensity versus total number of fluorophores in non-overlapping blue emission proteins. Table in the figure list the proteins assigned with specific number as represented in A, B and C..143
Figure 6.8. Selected region of figure 6 in the mass and pI range of 35-17 kDa and 5.6 - 6.8, highlighting protein spots 15 and 16 with multiple colors for identification of tyrosine containing proteins.